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A new approach for a flux solver is introduced, which takes into account source
terms, viscous terms, and multidimensional effects. The basic idea is to distribute
the source terms, which also contain the viscous terms and multidimensional effects,
from the cells to the cell interfaces. Then the fluxes on both sides of a cell interface are
determined by the Rankine–Hugoniot conditions and a linearized Riemann solver.
The resulting Rankine–Hugoniot–Riemann (RHR) solver yields much more accurate
results than conventional Riemann solvers for steady premixed laminar flames in
1D and 2D and a steady 2D inviscid channel flow with injection. Unsteady flow
simulations of two colliding flames producing sound and of acoustic oscillations
flattening a 2D Bunsen flame demonstrate that the new flux solver is able to compute
acoustic effects in flames accurately. This approach for a flux solver is more general
and can also be applied to solve other partial differential equations which can be
expressed as hyperbolic systems with source terms ex- or including higher spatial
derivatives, e.g., for the shallow water equations and for the magnetohydrodynamical
equations. c© 1998 Academic Press

1. INTRODUCTION

In recent years, the development of numerical methods for combustion problems has been
driven by an increasing industrial demand for fast and accurate computations of reacting
flow [21]. Considering the interaction of acoustics and combustion adds another level of
complexity. However, the control of thermoacoustic instabilities is decisive for the safe
operation of rocket motors and modern gas turbines [13]. Therefore, we have started to
develop a numerical method for the investigation of thermoacoustics and to apply it to the
computation of acoustic effects in premixed laminar flames. These flames are characterized
by low Mach numbers ofO(10−3) and small pressure changes of a few Pa. Interactions
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between acoustics and flames are governed by the compressible Navier–Stokes equations
for reacting gas mixtures with source terms describing chemical and heat release rates [15].
Considering acoustics for low Mach numbersM means a drastic time step reduction of
O(M) compared to solving the low Mach number equations, which allow for arbitrary
temperature and density changes but from which acoustics is removed [23, 7].

Before presenting our new numerical approach to simulate thermoacoustics, we shall
briefly review existing methods for computing related problems governed by non-homo-
geneous conservation laws. When computing stiff reaction waves, the spatial and temporal
resolution has to be chosen sufficiently high to avoid non-physical wave speeds. These
waves have the structure of a fluid dynamic shock that raises the pressure to some peak
value, followed immediately by a reaction zone that brings the pressure back down to a new
equilibrium value. On coarse grids it is not possible to resolve this combustion spike and for
stiff source terms the numerical wave speed is totally wrong unless the space step is made
extremely small. Examples and analyses of the numerical simulation of that problem are
given by Oran and Boris [21], LeVeque and Yee [17], Lindstr¨om [20], and Klingenstein [14].

Chorin [3] analyzes the random choice method by Glimm, shows its usefulness for
reacting flow, and carries out applications in one dimensional time-dependent reacting
flow. In this method the solution is first approximated by a piecewise constant function at
each time step. It is then advanced in time exactly and new values on the mesh are obtained
by sampling. The advantage of this procedure is that the interaction of the flow and the
chemical reaction can be taken into account when the Riemann problem is solved.

Roe [24] shows the necessity to modify the upwind schemes for non-homogeneous
hyperbolic conservation laws. He approximates the integration along the characteristics
taking the source terms into account and shows how to extend such schemes to higher
order.

Sweby [29] points out that the TVD (total variation diminishing) property used in
high resolution schemes for homogeneous conservation laws is inappropriate for prob-
lems with source terms. He utilizes a transformation of dependent variables to reduce the
non-homogeneous problem to homogeneous form and suggests to apply the TVD scheme
only to the fluxes of the homogeneous system and to treat the source term separately.

Bermudez and Vazquez [2] propose proper upwind discretizations of the source terms.
They point out that conservativity is not guaranteed when solving the 1D shallow water
equations with source terms although a conservative formulation is used. Therefore they
introduce a conservation property. In [32] Vazquez extends this method to the 2D shallow
water equations.

Colella [5] takes into account the tangential flux derivatives to construct the left and right
states at the cell interfaces at the mid-time level. The resulting 1D Riemann problems normal
to the cell interfaces are solved by Godunov’s method to determine the normal fluxes. The
tangential flux derivatives are approximated by Godunov’s method as well.

Instead of increasing the resolution or upwinding the source terms, some authors have
proposed flux discretizations, which take the source terms into account. LeVeque [18, 19]
has developed a scheme where a flux jump at the volume center equals the source term. He
shows very convincing solutions of the 1D and 2D shallow water equations.

In the present article, we present a new flux discretization which does not only take the
source terms into account but also the viscous terms and multidimensional effects. Our ap-
proach was motivated by correcting a non-physical pressure peak and a large mass flow error
when computing a steady premixed laminar flame using a conventional Riemann solver.
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These numerical errors are not related to the ones appearing near contact discontinuities
in gas mixture simulations with conservative schemes, if the gases on both sides of the in-
terface have different temperature and different ratios of specific heatsγ [12], because the
errors in flames also occur, ifγ is constant. Since the errors in flames even occur in 1D, they
are neither related to similar numerical artifacts at moving shear waves [30]. Considering a
simple model equation, we shall see that the numerical problems of conventional Riemann
solvers for hyperbolic systems with source terms are caused by discretizing the inviscid
fluxes, as if the equations were homogeneous. Most upwind schemes for the compressible
Euler and Navier–Stokes equations are based on solving one dimensional Riemann prob-
lems at the cell interfaces and make use of conventional homogeneous Riemann solvers.
As mentioned above, if such a conventional Riemann solver is applied to compute a steady
premixed laminar flame, a non-physical peak in the pressure profile and a large error in the
mass flow arise in the results, even if a conservative scheme without source term in the con-
tinuity equation is used [11]. These numerical phenomena become much more complex in
higher space dimensions and exist also in a weaker form in 1D Navier–Stokes computations
due to the viscous terms and in multidimensional homogeneous Euler simulations due to
the multidimensional effects. In many flame computations such phenomena are reduced by
using fine meshes and higher order schemes [8]. Generally these errors are negligible, but
if acoustic phenomena in flames are to be simulated, they can become dominant. In spite
of the importance only a few people seem to have studied the problems mentioned above
and hardly any pressure plots of flames are published, except for [8].

To discretize the equations the cell centered finite volume method is used here. For
the time integration the explicit Euler method is applied with an implicit treatment of
the source term because of its stiffness. The basic idea of our approach for a flux solver
is to transform the volume integrals of the source terms, which also contain the viscous
fluxes, into surface integrals. This leads to non-homogeneous Rankine–Hugoniot conditions
[15] at the corresponding cell interfaces, because the flux jump corresponds to the source
added at a cell interface (Fig. 1b). If no source is added at the cell interface, homogeneous
Rankine–Hugoniot conditions apply (Fig. 1a). The remaining conditions to determine the
statesC1 andC2 on the left and right sides of a cell interface are provided by linearizing the
characteristic relations. Thus, to compute the fluxesfC1 and fC2 at a cell interface, a nonlinear
system for six unknowns has to be solved, where three equations come from the linearized
Riemann invariants and three from the Rankine–Hugoniot jump conditions. Because of its

FIG. 1. Illustration of Rankine–Hugoniot conditions (a) homogeneous, flux jump equal zero; (b) non-homo-
geneous, flux jump equal source.
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construction, we call the new non-homogeneous Riemann solver the “Rankine–Hugoniot–
Riemann solver,” in short “RHR solver.” IffC1 is used as right flux in the left cell and if
fC2 is used as left flux in the right cell, the source term is properly taken into account in
the flux discretization. A steady 1D test case of a premixed laminar flame demonstrates
that non-physical pressure peaks and non-constant mass flow profiles can be avoided with
this approach. Further it is shown how the multidimensional effects can be taken into
account using the RHR solver. Applying dimension decoupling it is possible to consider the
differences of the fluxes in the other space dimensions as parts of the source terms. Thus
the new solver becomes a multidimensional Riemann solver treating the cross fluxes in a
physical way using the Rankine–Hugoniot jump conditions. Results of two dimensional
Bunsen flames and of a 2D inviscid channel flow with injection show that the RHR solver
leads to much more accurate results than a conventional Riemann solver. Further a 1D
simulation of two colliding flames demonstrates that the new solver also works for unsteady
flow. Finally a 2D simulation of acoustics flattening a wedge-shaped Bunsen flame to a
semicircle shows at least qualitatively a good agreement with experimental measurements.

Further details on the derivation, analysis, and application of the new approach for a flux
solver are presented in the Ph.D. thesis of the first author [10].

In Section 2 the non-homogeneous Euler equations are presented, which are used for
our analysis. Section 3 indicates the motivation for this research. The new approach for
a flux solver is presented in Section 4, and its extension to multi-dimensions is shown in
Section 5. In Section 6 the accuracy of the inviscid terms in the steady state is discussed
and in Section 7 the stability limits for the scheme are derived. A 1D non-homogeneous
hyperbolic model system is used in Section 8 to study the spatial accuracy for systems.
Simulations of a 2D homogeneous Euler test case are discussed in Section 9. Finally results
of premixed laminar 1D flames and 2D Bunsen flames are presented in Section 9 (steady)
and in Section 10 (unsteady with acoustics). Conclusions are given in Section 11.

2. THE NON-HOMOGENEOUS EULER EQUATIONS

For simplicity and without loss of generality the non-homogeneous 1D Euler system

∂U
∂t

+ ∂f
∂x

= S (1)

with

U =
 ρ

ρu
ρE

 , f =
 ρu

ρu2 + p
u(ρE + p)

 , and S =
 R

M
Q

 , (2)

will be discussed in our first studies to explain the basic idea. The species continuity
equations are not shown as it is only necessary to look at the global continuity equation.
Later, when the extension to more dimensions will be explained, the 2D system

∂U
∂t

+ ∂f
∂x

+ ∂g
∂y

= S (3)
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with

U =


ρ

ρu
ρv

ρE

 , f =


ρu

ρu2 + p
ρuv

u(ρE + p)

 , g =


ρv

ρuv

ρv2 + p
v(ρE + p)


and (4)

S =


R
M
N
Q


will be used. The symbolsρ, u, v, p, andE denote the density, thex- and they-components
of the velocity, the pressure and the total energy per unit mass, respectively.R, M, N, and
Q denote mass,x- andy-momentum, and total energy source rates. It is important to notice
that the non-homogeneous Navier–Stokes equations can be treated as a non-homogeneous
Euler system, if the viscous terms are considered as a part of the source termS.

3. MOTIVATION

We use the following simple 1D test case of a steady, premixed laminar flame [8] (Fig. 2)
to show the motivation for this work. Using SI units, the reaction ratek of the one step
mechanismA→ B is

k = 8× 106 exp

(
−7500

T

)
, (5)

whereT is the temperature. The molecular weightsWA andWB are 0.029085 kg/mole, the
viscosityµ is 7× 10−5 Ns/m2, the Prandtl number Pr= (µcp)/λ, and the Schmidt number
Sc= µ/(Dρ) are 0.7 (λ is the thermal conductivity,D the diffusion coefficient, andcp the
specific heat at constant pressure), the formation enthalpy of speciesA andB is zero and
H0

B = cpWB 1500 K, respectively, wherecp = 1000 J/(kg K). The ratio of specific heats is
γ = 1.4. At the inlet we have the mass fraction of speciesA YA = 1 andT = 300 K. Since
ρinuin must be equal toρoutuout in the steady state, we add

ρoutuout − ρinuin

ρin − ρout

to the velocity field after each time step. Thus the mass within the computational domain
keeps conserved and the flame is forced to stay within the computational domain. At the
outlet the pressure is set equal to 1× 105 Pa.

FIG. 2. The 1D test case of a steady, premixed laminar flame.
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FIG. 3. Conventional Riemann solver (solid lines); RHR solver (dashed lines); [25] (markers).

The steady state results obtained on a grid with 50 equidistant mesh points with a conven-
tional Riemann solver are presented in Fig. 3 (solid lines) where the temperatureT , velocity
u, mass flowρu, and pressurep− pout profiles are shown in SI units. For simplicity a char-
acteristic based Riemann solver (Subsection 4.1) was used. But the same phenomena can
be observed if Roe’s or an exact Riemann solver is applied. Although there is no source
term in the global continuity equation and a conservative formulation has been used, the
mass flow is not constant as it should be. Further a non-physical pressure peak in the flame
zone of about 60 Pa can be observed which is about 400 times the dynamic pressure of
the gas on the left side of the flame. To decrease these errors one could make an expensive
grid refinement. The markers in the temperature and velocity plots show the result of an
unsteady simulation on a mesh with 400 grid points [25].

The origin of these numerical phenomena, which can become much more dramatic in two
or three space dimensions, can be found in the wrong flux evaluation at the cell interfaces
when employing a conventional Riemann solver. In Subsection 4.2 the RHR solver is
introduced which allows us to avoid the numerical errors and to produce correct results
shown in Fig. 3 (dashed lines). The correct pressure distribution obtained with the RHR
solver is enlarged in Fig. 4.

FIG. 4. p − pout with RHR solver.
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In this paper the discretization of the inviscid terms is only first order in space. This does
not influence the numerical phenomena qualitatively but it allows us to isolate the origin of
the problems.

4. NEW APPROACH FOR A FLUX SOLVER

In Subsection 4.1 a characteristic based approximate Riemann solver is outlined. The
Rankine–Hugoniot–Riemann (RHR) solver, which takes source terms and viscous fluxes
into account, is introduced in Subsection 4.2. In Subsection 4.3, the RHR solver is illustrated
for the linear advection equation.

4.1. Characteristic Based Approximate Riemann Solver

The characteristic based Riemann solver [27, 28] which is presented next works almost as
well as an exact Riemann solver or an approximate one like Roe’s for small Mach numbers,
while for supersonic flow an exact Riemann solver or for example Roe’s approximate
Riemann solver are much better suited. For simplicity first order in space will be discussed.
To achieve higher order in space the MUSCL ansatz [31] can be applied.

At the beginning of a time step constant values are assumed in the left and right cells
i − 1 andi of the cell interfacexi −1/2 (first picture in Fig. 5). These states in the areasA
and B (third picture in Fig. 5) defining the Riemann problem are determined by the cell
averagesUn

i −1 andUn
i in the cellsi − 1 andi at timen1t . The second picture of Fig. 5

shows the approximate state after the time1t where the expansion fan is approximated by
a discontinuity. Here we assume 1D subsonic flow withuC > 0. As soon as the states in the
areaC are known one can figure out the fluxes at the cell interface. The linearization of the

FIG. 5. Characteristic based approximate Riemann solver.
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characteristic relations

c2dρ − dp = 0 along the characteristic with the speedu

ρcdu+ dp = 0 along the characteristic with the speedu + c (6)

ρcdu− dp = 0 along the characteristic with the speedu − c

leads to the linear algebraic system (third picture in Fig. 5)

c2
A (ρC − ρA) − (pC − pA) = 0

ρAcA (uC − uA) + (pC − pA) = 0 (7)

ρBcB (uC − uB) − (pC − pB) = 0

which can be easily solved forρ, u, and p in the areaC [1]. This 1D approach is also
used for multi-dimensions whereu represents the velocity component normal to the cell
interface. The velocity component parallel to the interface and the mass fractions, if more
than one species are considered, are taken from the upwind side (region A in Fig. 5).

4.2. Rankine–Hugoniot–Riemann(RHR) Solver

The characteristic based approximate Riemann solver assumes hyperbolic homogeneous
conditions. But if there is a source term, the assumption to have Riemann invariants is no
longer valid, because the characteristic relations (6) will no longer be homogeneous.

The basic idea of our approach for a flux solver is to treat the source terms as surface
integrals instead of volume integrals (Fig. 6). We consider 1D flow in a channel with heighth.
The parameterαi is the fraction of the source terms in celli distributed to the left interface.
The distribution of non-negative fractionsαi and 1− αi to the left and right interfaces,
respectively, requiresαi to be greater than or equal to zero and smaller than or equal to one.
Thereby, the source termh1x(αi Si + (1− αi −1)Si −1) is located at the cell interfacexi −1/2,
whereh1xSi = h1xS(Ui ) approximates the volume integral of the source termS in cell i .

FIG. 6. Source terms distributed to cell interfaces.
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FIG. 7. Rankine–Hugoniot–Riemann (RHR) solver.

Thus one obtains piecewise homogeneous hyperbolic conditions in 1D with source terms
as discontinuities at the cell interfaces.

In the characteristic diagram of Fig. 5 the source discontinuity at the cell interface would
be located in the areaC. Therefore it is necessary to divideC into the regionsC1 andC2

(Fig. 7). During one time step constant states are assumed within the areasA, B, D, C1, and
C2. Thus, the states inC1 andC2 are connected by the Rankine–Hugoniot jump conditions.
These require the differences between the fluxes inC1 andC2 to be equal to the source
terms located at the cell interface:

(ρu)C2 − (ρu)C1 = 1x(αi Ri + (1 − αi −1)Ri −1)

(ρu2 + p)C2 − (ρu2 + p)C1 = 1x(αi Mi + (1 − αi −1)Mi −1) (8)(
γ

γ − 1
up+ ρ

2
u3

)
C2

−
(

γ

γ − 1
up+ ρ

2
u3

)
C1

= 1x(αi Qi + (1 − αi −1)Qi −1).

Now the conditions are homogeneous and hyperbolic within the cells on both sides of the
interface and the assumption of Riemann invariants along the characteristics becomes valid.
Linearizing the characteristic relations (6) for the situation of Fig. 7 yields

c2
A

(
ρC1 − ρA

) − (
pC1 − pA

) = 0

ρAcA
(
uC1 − uA

) + (
pC1 − pA

) = 0 (9)

ρBcB
(
uC2 − uB

) − (
pC2 − pB

) = 0.

Equations (8) and (9) constitute a nonlinear algebraic system forρ, u, andp in the areasC1

andC2. Applying the Newton–Raphson method and using good start values (for example,
those from the left and right cells at the timet = n1t) one or two iterations are usually
enough. Finally different fluxes for the left and right cells at the interfacei − 1/2 are
obtained with differences equal to1x(αi Si + (1− αi −1)Si −1).

Thus in 1D the only thing one has to do is to distribute the source terms and to replace
the conventional Riemann solver by the RHR (Rankine–Hugoniot–Riemann) solver. Here
we choseα = 0.5 for the 1D simulations and for the 2D computationsα = 1, if the flow
comes from the left side or from below, respectively. Thus, the source term is distributed to
the upwind cell interface, ifα = 1 is chosen.



             

584 JENNY AND MÜLLER

The sign ofu, which is needed for the distribution of the source terms from the cell to the
corresponding interfaces, is not known before the fluxes are computed. We have used the sign
of u obtained with the characteristic based Riemann solver (7). For subsonic flow without
source terms, there is no ambiguity in determininguC in (7). We have chosen the following
strategy: If the approximate cell interface velocitiesui −1/2 and ui +1/2 are both positive
(negative),α1xSi is distributed to the upstream cell interfacexi −1/2 (xi +1/2, respectively)
and(1− α)1xSi is distributed to the downstream cell interfacexi +1/2 (xi −1/2, respectively).
If ui −1/2ui +1/2 ≤ 0 and not bothui −1/2 andui +1/2 are zero, we setαi = ui −1/2/(ui −1/2 −
ui +1/2) andαi 1xSi and(1− αi )1xSi are distributed to the left and right cell interfaces,
respectively. In that case, the distribution of the source term is biased towards the cell
interface with the larger modulus of the cell interface velocity. Ifui +1/2 = ui −1/2 = 0 we
apply the characteristic based approximate Riemann solver to determine the momentum
flux, i.e., pi +1/2 and pi −1/2.

It is important to notice that it is not necessary to store both fluxes(fC1)i −1/2 and(fC2)i −1/2,
because (

fC2

)
i −1/2 = (

fC1

)
i −1/2 + 1x(αi Si + (1 − αi −1)Si −1).

The update of the cell averaged variables can be done in the same way as with a conventional
Riemann solver if either

f i −1/2 = (
fC1

)
i −1/2 + 1x(1 − αi −1)Si −1

or (10)

f i −1/2 = (
fC2

)
i −1/2 − 1xαi Si

is used as numerical flux and no additional variables have to be stored. Forui −1/2 > 0 the
mass fractions(Yk)C1 are given by(Yk)C1 = (Yk)i −1 and forui −1/2 < 0 we use the relation
(Yk)C2 = (Yk)i . In both situations the differences between the fluxesρuYk in the areasC1

andC2 are equal to the corresponding source term discontinuities and Eq. (10) holds as for
the other components of the flux vectorf.

The following equation shows an explicit Euler step:

Un+1
i = Un

i + 1t

1x

(
fn
i −1/2 − fn

i +1/2

) + 1tSn
i

= Un
i + 1t

1x

 fn
i −1/2 + 1xαi Sn

i︸ ︷︷ ︸ − (
fn
i +1/2 − 1x(1 − αi )Sn

i

)︸ ︷︷ ︸︷ ︸︸ ︷(
fC2

)n

i −1/2

︷ ︸︸ ︷(
fC1

)n

i +1/2


. (11)

The superscriptn means that the values are taken at the timet = n1t . For the time in-
tegration any other scheme can be applied. Here the explicit Euler method (11) is used,
except for the stiff source terms of combustion which are treated implicitly according to
Sn+1 = Sn + ∂Sn/∂U′(U′n+1−U′n) with U′ = (ρ1, . . . , ρns)

T .ρ1, . . . , ρns denote the partial
densities ofns species. Notice that for simplicity the vectorU′ instead ofU is used to derive



            

RANKINE–HUGONIOT–RIEMANN SOLVER 585

the Jacobian. This is much simpler and is good enough to stabilize the scheme. For the flux
evaluation (10), the source terms are treated explicitly here.

The difference of the fluxes at the cell interfaces is exactly equal to the source term
located there. That’s the novel feature of our approach: we allow for different fluxes at a cell
interface to accommodate the flux jump caused by adding mass, momentum, and energy
via the source term at the cell interface. For explicit Euler time integration, we show with
(11) that a conservative scheme is obtained if one uses the fluxes given in (10) for both
sides of the volume interface. Therefore our scheme is conservative. Note that we obtain
in (10) fC1 = fC2 = fC, where stateC is given by the characteristic based Riemann solver
(Subsection 4.1), ifS= 0.

At the beginning of a time step the viscous fluxes are computed at each cell interface, if
the Navier–Stokes equations are solved. In each cell, the difference of the viscous fluxes
over the right and left cell interfaces is added to the source terms. This is no modification
for conventional flux solvers. But for the RHR solver it is, because the source terms are
taken into account for the computation of the inviscid fluxes.

4.3. RHR Solver for Nonhomogeneous Linear Advection Equation

Let us consider the scalar 1D conservation law

∂u

∂t
+ ∂ f (u)

∂x
= S (12)

with the source termS= S(x) independent of the conserved variableu. f (u) is the flux
function.

First, we are interested in the steady state

d f (u(x))

dx
= S(x). (13)

Since we assume the characteristic speedd f (u)/du to be positive, we prescribe the bound-
ary condition

u(xa) = ua (14)

at the left boundaryxa. Integration of Eq. (13) yields

f (u(x)) = f (ua) +
∫ x

xa

S(x̄) dx̄. (15)

Assuming that the flux functionf is invertible, we obtain the exact steady state solution

u(x) = f −1

(
f (ua) +

∫ x

xa

S(x̄) dx̄

)
. (16)

As an example, we consider the linear advection equation with a piecewise linear source
term,

f (u) = au, (17)
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S(x) =


0, xa ≤ x ≤ xb

S1(x − xb), xb ≤ x ≤ xc

S1(xd − x), xc ≤ x ≤ xd

0, xd ≤ x,

(18)

wherea andS1 are positive constants andxc − xb = xd − xc, i.e.,S(x) is continuous.
Let us consider the interval [xb, xd] as celli with cell interfacesxi −1/2 = xb andxi +1/2 = xd.

Suppose we distribute the exactly integrated source term1x Si = ∫ xi +1/2

xi −1/2
S(x) dx to the up-

stream cell interfacexi −1/2. We obtain the RHR solver withα = 1:

un+1
i = un

i − 1t

1x

[(
auC1

)n

i + 1
2
− (

auC2

)n

i − 1
2

]
. (19)

As u is a Riemann invariant on the characteristicdx/dt = a, we get(
uC1

)n

i +1/2 = un
i and

(
uC1

)n

i −1/2 = un
i −1

assuming a constant reconstruction, i.e.,u(x, n1t) ≈ un
i for x in (xi −1/2, xi +1/2), and the

CFL condition 0< a1t/1x ≤ 1. The Rankine–Hugoniot condition yields(
auC2

)n

i − 1
2

= (
auC1

)n

i − 1
2
+ 1x Si = aun

i −1 + 1x Si .

Thus, (19) becomes

un+1
i = un

i − 1t

1x

[
aun

i − (
aun

i −1 + 1x Si
)]

. (20)

This scheme corresponds to the first-order upwind method. In the steady state, we have the
discrete form of (13):

aui − aui −1

1x
= Si . (21)

un
i corresponds to the exact steady state solution atx = xd. If we reconstruct the cell average

un
i as a constant function in celli , we observe that the total flux jump over celli is located

at the upstream cell interface (Fig. 8).
For α = 1/2, half of the source term is distributed to the left and right cell interfaces,

respectively. The steady state fluxes are illustrated in Fig. 9. We see that in the steady state
we have

aui − aui −1

1x
= aui +1 − aui

1x
= 1

2
Si . (22)

ui approximates the cell average better forα = 1/2 than forα = 1. In this particular example
ui is equal to the exact cell average

1

1x

∫ xi +1/2

xi −1/2

uexact(x) dx.

For the Burgers equation, i.e.,f (u) = u2/2 in (12), we obtain similar results with the RHR
solver compared with the exact solution.
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FIG. 8. RHR flux forα = 1 and exact flux.

In the related approach by LeVeque [18,19], the total flux jump1x Si is located at the cell
center. The flow states in the left and right cell halves can be determined by the additional
requirement of conservativity ofu in a cell. The left and right states in all cells define
homogeneous Riemann problems at the cell interfaces. Those are solved by a conventional
Riemann solver.

In the steady state, the RHR solver satisfies the Rankine–Hugoniot condition

f (ui ) − f (ui −1) = (1 − α)1x Si −1 + α1x Si . (23)

If we assumeui andui −1 to approximateu atx = xi −1/2 + α1x andx = xi −1/2 − (1−α)1x,
respectively, relation (23) exactly holds for the exact steady state solution providedα = 1
or α = 0. For 0< α < 1, relation (23) holds only approximately, unless the right hand side
of (23) is equal to the integral ofS(x) from xi −1/2 − (1 − α)1x to xi +1/2 + α1x. Thus,
the parameterα can also be interpreted as the fraction of the spatial increment in celli

FIG. 9. RHR flux forα = 1/2 and exact flux.
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(i.e.,x − xi −1/2 = α1x) where the conserved variableu is approximated by the cell average
ui to evaluate the fluxf (ui ).

Next, let us consider the steady state problem in a frame of reference moving with
constant velocitys< 0 to the left. Suppose the initial condition corresponds to the steady
state solutionus. The exact solution reads

u(x, t) = us(x + st) − s. (24)

If we solve the problem

∂u

∂t
+ (a − s)

∂u

∂x
= S̃(x, t) = S(x + st) (25)

with the RHR solver, we obtain for the first time level

u1
i = u0

i − 1t

1x

((
(a − s)uC1

)0
i + 1

2
− (

(a − s)uC2

)0
i − 1

2

)
. (26)

Since (
(a − s)uC2

)0
i −1/2 − (

(a − s)uC1

)0
i −1/2 = (1 − α)1x Si −1 + α1x Si ,(

uC1

)0
i −1/2 = u0

i −1 and
(
uC1

)0
i +1/2 = u0

i for 0 < (a − s)1t/1x ≤ 1,

we get

u1
i = u0

i − 1t

1x

(
(a − s)u0

i − (
(a − s)u0

i −1 + (1 − α)1x S0
i −1 + α1x S0

i

))
. (27)

Because the discrete initial condition is assumed to correspond to the steady state solution
u0

i + s obtained with the RHR solver, the following relation holds

au0
i − au0

i −1 = a
(
u0

i + s
) − a

(
u0

i −1 + s
) = (1 − α)1x S0

i −1 + α1x S0
i . (28)

Using (28) in (27) we get

u1
i = u0

i − 1t

1x
(−s)

(
u0

i − u0
i −1

)
. (29)

Equation (29) is the first order upwind discretization of the linear advection equation

∂u

∂t
− s

∂u

∂x
= 0 (30)

which correctly describes the advection ofu with the velocity−s. Also for the other
scalar conservation laws and systems the RHR solver works consistently under Galilei-
transformation.

For systems, the distribution of the integrated source term1xSi to the cell interfaces
xi ±1/2 proceeds in the same way as for scalar conservation laws. The total integrated source
term is distributed according to the velocity. Since the Rankine–Hugoniot conditions (8)
are built into the numerical flux, the balance of flux difference and integrated source term
is satisfied in the steady state. Unsteady motion is handled by the Riemann invariants at the
cell interfaces.
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For 1D non-homogeneous linear hyperbolic systems, the RHR solver withα = 1/2 coin-
cides with LeVeque’s extension of Godunov’s scheme [18] and Roe’s source term treatment
[24]. Even if the eigenvalues of the linear hyperbolic system have different signs and are
different from zero, the RHR with any parameterα ∈ [0, 1] satisfies the Rankine–Hugoniot
conditions in the steady state, whereas a conventional upwind scheme fails to do so (cf.
Section 8). Note that the present approach for a flux solver differs from the ones by Roe
[24] and LeVeque [18] in the nonlinear case.

5. EXTENSION TO MULTI-DIMENSIONS

In this section we show the analogy between source terms in 1D and multidimensional
effects, if dimension decoupling is applied.

For simplicity a Cartesian 2D grid is used for the following investigations. It will be
shown that it is possible to treat each row and each column of the grid in Fig. 10 as a
1D problem, if the approximation of the cross flow fluxes is good enough. The governing
equations are the non-homogeneous 2D Euler equations (3) and (4).

To convert rowj of the grid in Fig. 10 into a 1D problem it is necessary to replace the
source termsRi, j , Mi, j , Ni, j , andQi, j by the modified source terms:

R∗
i = Ri, j + (ρv)i, j −1/2 − (ρv)i, j +1/2

1y

M∗
i = Mi, j + (ρuv)i, j −1/2 − (ρuv)i, j +1/2

1y

N∗
i = Ni, j + (ρv2 + p)i, j −1/2 − (ρv2 + p)i, j +1/2

1y
(31)

Q∗
i = Qi, j

+ ((γ /(γ − 1))vp+ (ρ/2)v(u2 +v2))i, j −1/2 − ((γ /(γ − 1))vp+ (ρ/2)v(u2 +v2))i, j +1/2

1y
.

FIG. 10. Cross flow fluxes as source terms.
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If the Navier–Stokes equations are solved, the source termsSi, j also contain the viscous
flux balance. If this is done for all cells in rowj the RHR solver presented in Subsection 4.2
can be applied to compute the fluxes at the interfaces(1/2, j ), (3/2, j ), (5/2, j ), etc.
Equations (31), (9),vC1 − vA = 0, andYC1 − YA = 0 (if u is positive) form a nonlinear,
but closed algebraic system for the primitive variables in the regionsC1 andC2. For the
fluxesρuYk, the mass fractionsYk are taken from the upwind side (for positiveu from the
regionA).

To compute the fluxes at the interfaces(i, 1/2), (i, 3/2), (i, 5/2), etc., the same can be
done for columni where the modified source terms

R∗∗
j = Ri, j + (ρu)i −1/2, j − (ρu)i +1/2, j

1x

M∗∗
j = Mi, j + (ρu2 + p)i −1/2, j − (ρu2 + p)i +1/2, j

1x

N∗∗
j = Ni, j + (ρuv)i −1/2, j − (ρuv)i +1/2, j

1x
(32)

Q∗∗
j = Qi, j

+ ((γ /(γ − 1))up+ (ρ/2)u(u2 +v2))i −1/2, j − ((γ /(γ − 1))up+ (ρ/2)u(u2 +v2))i +1/2, j

1x

have to be used. This has to be done for all rows and columns. In our code the fluxes from
the old time level are used to compute the modified source terms, i.e., the fluxes( )i, j ±1/2

in (31) and the fluxes( )i ±1/2, j in (32). For the first time step 10 iterations are made starting
with the fluxes obtained with a conventional Riemann solver.

In short one can describe the whole procedure as follows:

(i) The source terms have to be modified using (31) with the fluxes of the old time
step. Note thatSi, j contains the viscous terms as well.

(ii) Because of stability reasons (see Section 7) the modificationS̄∗
i, j = (1 − θ)S∗

i, j +
θ
4(S∗

i +1, j + S∗
i −1, j + S∗

i, j +1 + S∗
i, j −1) for the source terms is suggested. We have usedθ =

0.04 which is an empiric value.
(iii) Using S̄∗

i, j , the RHR solver can be applied to derive the fluxes at the eastern
and western cell interfaces. We choseαi, j equal to one, ifu was positive at the interfaces
∂Äi ±1/2, j and equal to zero, ifu was negative at both interfaces. Forui +1/2, j ui −1/2, j ≤ 0
α was set equal toui −1/2, j /(ui −1/2, j − ui +1/2, j ), if not both,ui +1/2, j andui −1/2, j , were
zero. In that casēS∗

i, j was set equal to zero since then the RHR solver needs not to be
applied.

(iv) Analogously to (i), (ii), and (iii), the northern and southern fluxes can be deter-
mined.

(v) These fluxes and the source termSi, j are used for the time integration.
(vi) Goto (i) for next time step.

Modifications of the source terms are necessary to extend the RHR solver to axisymmetric
flow with or without swirl, to flow in a rotating frame of reference, to 3D, and to structured
meshes with curvilinear coordinates.



           

RANKINE–HUGONIOT–RIEMANN SOLVER 591

6. ACCURACY OF THE INVISCID TERMS IN THE STEADY STATE

We assume that in 1D the integral over the source terms (and the viscous terms) in celli
is accurate of order1xk, i.e., the error isβi 1xk. We define

〈β〉 = 1

N

N∑
j =1

β j and 1x = L

N
,

whereL is a constant length scale andN is the number of cells. In the steady state the
difference of the fluxes atxi +1/2 andxi −1/2 must be equal to the integral over the source
term in celli due to the conservativity of the scheme. Therefore, if the flux atx1/2 is exact
(e.g., if we have Dirichlet boundary conditions), the error of the flux atx3/2 is β11xk. By
induction it follows that the errors of the fluxes atxi +1/2 are

1xk
i∑

j =1

β j

and atxN+1/2 the expected error is

1xk N〈β〉 = 1xk L

1x
〈β〉 = 1xk−1L〈β〉.

Since in the steady state the fluxes at the interfacexi +1/2 are equal to those in celli if
the RHR solver withαi = 1 is applied, the differences between the numerical steady state
fluxes in celli and the exact fluxes atxi +1/2 are of order1xk−1. This has been demonstrated
with a 1D Euler test case with a source termQ(x) in the energy equation (Fig. 11; in units
of 2.5× 105 m−1 s−3 kg). The source term is a known function ofx and can be exactly
integrated over each cell. At the left boundary the velocity is 50 m/s and the temperature is
300 K. At the right boundary the pressure is 105 Pa. In the Figs. 11, 12, and 13 the velocity,
temperature, and pressure profiles of the steady state solutions obtained on grids with 5,
10, 20, and 40 cells are shown. Figure 11 additionally shows the energy source term (in
ordinate units of 2.5× 105 m−1 s−3 kg). It can be observed that the cell averaged values are
identical to the exact ones at the corresponding right cell interfaces.

For 0≤ α ≤ 1 the RHR solver guarantees that the fluxes in celli lie between those at the
corresponding interfaces, if the source term components do not change their sign within
the cellsi, i + 1, andi − 1. Therefore the fluxes in the cells are bounded by the fluxes at the
interfaces. This is not the case with a conventional Riemann solver.

If steady state is obtained with a conventional Riemann solver, the fluxes and source
terms are balanced for each cell, but for each additional time step shock tube problems
have to be solved due to the jumps at the cell interfaces. This means that shocks, contact
discontinuities, and expansion fans travel into the cells and by taking the average of the
different regions in the cells at the end of the time step, numerical entropy is produced. This
is a physical interpretation of numerical diffusion in 1D. The task is to make the jumps at
the cell interfaces as small as possible which can be done by a higher order reconstruction
of the flow variables at the left and right cell sides. Figure 14 shows the situation in 1D for
the interface between the cells 2 and 3 for a conventional Riemann solver. It is shown that
the flux differences1ρu at the cell interfaces become smaller, if a second order MUSCL
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FIG. 11. Velocity plot of a 1D Euler test case with an exact source term (lower plot, in units of 2.5× 105 s−3

m−1 kg) in the energy equation on 4 different grids; 5, 10, 20, 40 cells: dashed, dotted, dash-dotted, solid lines.

FIG. 12. Temperature plot of a 1D Euler test case with an exact source term in the energy equation on 4
different grids; 5, 10, 20, 40 cells: dashed, dotted, dash-dotted, solid lines.

FIG. 13. Pressure plot(p − p∞) of a 1D Euler test case with an exact source term in the energy equation on
4 different grids; 5, 10, 20, 40 cells: dashed, dotted, dash-dotted, solid lines.
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FIG. 14. Steady state obtained with a conventional Riemann solver.

scheme is applied. The situation is completely different in the steady state which is obtained
with the RHR solver. Then the flux differences at the volume interfaces are equal to the
source terms located there (and no shocks, contact discontinuities, or expansion fans travel
into the volumes). After a further time step there is no mixing and therefore no numerical
entropy production by the convective terms. Figure 15 shows this situation at the interface
between the cells 2 and 3.

Figure 16 shows the spatial order of the flame velocity of the 1D test case of Section
3 (Fig. 3) using four different grids. It can be seen that the error|unum

flame − uas
flame| (uas

flame=
0.522 m/s is the flame velocity by [25]) depends on the flux solver and is of order one in all
cases (conventional Riemann solver, RHR solver withα = 1, and RHR solver withα = 0.5),
but more accurate withα = 0.5. The fluxes are expected to be second order accurate and a
possible reason for the first order of the flame velocity is that the volume averaged values
(which is a first order approximation to the values at the volume interfaces; Figs. 11–13)
are used for the evaluation of the viscous fluxes and the source terms.

7. STABILITY

First the stability condition for the scalar 1D model equation

∂u

∂t
+ a1

∂u

∂x
= −a3u, (33)

wherea1 anda3 are non-negative constants without viscous terms with the discretization
(using the RHR solver with 0≤ α ≤ 1)

un+1
i = un

i − a11t

1x

(
un

i − un
i −1

) + (1 − α)a31t
(
un

i − un
i −1

) − a31tun+1
i (34)

will be derived. The third term on the right side of (34) corresponds to the second terms on
the right side of the first equality of (10).

Note that the characteristic relations (9) simplify touC1 = uA for the 1D advection equa-
tion with a1 > 0, and thus(fC1)i −1/2 = a1ui −1 (cf. Subsection 4.3). Forα = 1, (34) is a first
order upwind scheme.

FIG. 15. Steady state obtained with the RHR solver.
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FIG. 16. Error = |unum
flame−uas

flame|; 20, 40, 80, and 160 points;uas
flame= 0.522 m

s
; solid line, conventional Riemann

solver; dashed line, RHR solver withα = 0.5; dashed pointed line, RHR solver withα = 1.

For (34) the von Neumann stability analysis leads to the sufficient stability conditions

1t ≤ 1x

a1 − (
3
2 − α

)
a31x

, if (1 − α)a3 ≤ a1

1x

or (35)

α ≥ 1

2
− a1

a31x
, if (1 − α)a3 ≥ a1

1x
.

To be sure to fulfill the second relation of (35) also for huge source termsa3 and small
wave speedsa1 one has to chooseα ≥ 0.5. If α = 1 the first relation is equal to the time step
restriction for an upwind scheme and forα < 1 the restriction is even less stringent.

Next the 2D case will be studied. Therefore we consider the scalar equation

∂u

∂t
+ a1

∂u

∂x
+ a2

∂u

∂y
= −a3u, (36)

wherea1, a2, anda3 are non-negative constants with the following discretization (using the
RHR solver with 0≤ α ≤ 1):

un+1
i, j = un

i, j + 1t

(
a1

1x
un

i −1, j + (1 − α)

(
a2

1y
un

i −1, j −1 − a2

1y
un

i −1, j − a3un
i −1, j

))

− 1t

(
a1

1x
un

i, j + (1 − α)

(
a2

1y
un

i, j −1 − a2

1y
un

i, j − a3un
i, j

))

+ 1t

(
a2

1y
un

i, j −1 + (1 − α)

(
a1

1x
un

i −1, j −1 − a1

1x
un

i, j −1 − a3un
i, j −1

))

− 1t

(
a2

1y
un

i, j + (1 − α)

(
a1

1x
un

i −1, j − a1

1x
un

i, j − a3un
i, j

))
− 1ta3un+1

i, j . (37)

In Eq. (37) the terms corresponding to the second terms on the right side of the first equality
of (10) are those with the factor(1 − α). It is easy to see that we have a first order upwind
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scheme ifα = 1. One part of that term consists of the flux difference of the cross fluxes
which are taken here from the corresponding upwind cells. The numerical scheme which
was used to produce the results presented in this work takes the cross fluxes from the old
time level.

The von Neumann stability analysis leads to the sufficient stability conditions

r3 ≥ 1 + 2(r1 + r2) + 4r4

−r3 ≤ 1 − 2(1 − α)(r1 + r2)

}
if r4 ≥ −min(r1, r2),

−r3 ≤ 1 + 2α(r1 + r2) + 4r4 if r4 ≤ −max(r1, r2),

wherer1 = a11t/1x, r2 = a21t/1y, r3 = 1 + a31t , andr4 = (1 − α)a31t − α(r1 + r2).
We investigate the two relations

r3 ≥ 1 + 2(r1 + r2) + 4r4 and −r3 ≤ 1 + 2α(r1 + r2) + 4r4. (38)

To satisfy the first condition of (38)

α ≥ 1

2
+ a3

4

(
a1

1x
+ a2

1y
+ a3

)−1

(39)

must be fulfilled. For the second one we obtain the following stability limit for1t :

1t ≤ 1x1y

α(a11y + a21x) − (5 − 4α)(1/2)a31x1y
. (40)

The relation (39) shows thatα must be larger than or equal to 0.5. If the source term is
huge(a3 À a1/1x + a2/1y) α must be larger than or equal to 0.75. The conclusion is
that in order to be sure to satisfy (39) one must set 0.75≤ α ≤ 1. If α = 1, (37) becomes a
classical upwind discretization of the corresponding differential equation with the stability
condition (40).

8. SPATIAL ACCURACY FOR SYSTEMS

The numerical problem with the source term in one space dimension, which was the
motivation for this work, is equivalent to finding characteristics for systems in multi dimen-
sions. Generally it is not possible to diagonalize the Jacobian of the source term with the
left and right eigenvector matrices of the Jacobian of the inviscid flux. In the scalar case,
the Jacobians of the flux and of the source term are scalars and in diagonal form. Therefore
these numerical phenomena cannot be studied with a scalar equation and a system has to
be considered.

In Section 7 we have seen that the RHR solver withα = 1 is equal to a first order upwind
scheme and withα = 0 we have a downwind discretization (for positive wave speeds). The
RHR solver treats the source term in a different, physical way and we have seen in Section 5
that the fluxes of the other space dimensions can be treated as a part of the source term as
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well. To study the non-scalar case we consider the one dimensional 2× 2 system(
ũ

ṽ

)
t

+ A
(

ũ

ṽ

)
x

= −sQ
(

ũ

ṽ

)
R−1

(
ũ

ṽ

)
t

+ 3 R−1

(
ũ

ṽ

)
x

= −sR−1Q
(

ũ

ṽ

)
(41)(

u

v

)
t

+ 3

(
u

v

)
x

= −sR−1Q R
(

u

v

)
with the constant matricesA = R 3 R−1 andQ with

3 =
[

a 0
0 −b

]
,

(
u

v

)
= R−1

(
ũ

ṽ

)
,

wherea, b, u, andv are assumed to be positive ands is a function ofx. The discretization
with the RHR solver for the steady state

3

(
u

v

)
x

= −sR−1Q R
(

u

v

)
leads to [

a
1x 0

0 − b
1x

](
ui − ui −1

vi − vi −1

)

= −si

[
α′ 0
0 α′′

]
R−1Q R

(
ui

vi

)
− si −1

[
α′ 0
0 α′′

]
R−1Q R

(
ui −1

vi −1

)
,

whereα′ andα′′ correspond toα of (34) and belong to the two characteristic equations of
(41). In each equation of the characteristic form, ¯α = 1− α multiplied by the source term
in the left cell of the interface has to be added to the upwind discretization of the fluxes.
After the back transformation one obtains( ũi −ũi −1

1x

ṽi −ṽi −1

1x

)
= −si R

[
α′
a 0

0 − α′′
b

]
R−1Q

(
ũi

ṽi

)
− si −1R

[
α′
a 0

0 − α′′
b

]
R−1Q

(
ũi −1

ṽi −1

)
. (42)

If α′ = 1 andα′′ = 0, then (42) is equal to the upwind steady state discretization:( ũi −ũi −1

1x

ṽi −ṽi −1

1x

)
= −si R

[
1
a 0

0 0

]
R−1Q

(
ũi

ṽi

)
− si −1R

[
0 0

0 − 1
b

]
R−1Q

(
ũi −1

ṽi −1

)
. (43)

Forα′ = α′′ = 0.5 one obtains( ũi −ũi −1

1x

ṽi −ṽi −1

1x

)
= −si

2
R

[
1
a 0

0 − 1
b

]
R−1Q

(
ũi

ṽi

)
− si −1

2
R

[
1
a 0

0 − 1
b

]
R−1Q

(
ũi −1

ṽi −1

)
. (44)

We consider the example

A =
[

0 1
2 1

]
=

[
1 −1
2 1

][
2 0
0 −1

][
1/3 1/3

−2/3 1/3

]
, Q =

[
0 0
1 1

]
,

s =
(

1 if 0 ≤ x ≤ 1
0 else

(45)
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with ṽ(0) = ṽ0 andũ(0) = ũ0. In the steady state we have

ṽx = 0, ũx =
(

− ũ+ṽ
2 if 0 ≤ x ≤ 1

0 else,

and the exact solution is

ṽ = ṽ0, ũ =
 (ũ0 + ṽ0) e−x/2 − ṽ0 if 0 ≤ x ≤ 1

ũ0 if x < 0
(ũ0 + ṽ0) e−1/2 − ṽ0 if x > 1.

With the upwind discretization (43)(α′ = 1, α′′ = 0), 1x = 1, andxi = i − 1/2 we have(
ũ1

ṽ1

)
−

(
ũ0

ṽ0

)
= ũ1 + ṽ1

3

(−0.5

−1

)}
⇒ ũ1 + ṽ1

3
= 2

9
(ũ0 + ṽ0)(

ũ2

ṽ2

)
−

(
ũ1

ṽ1

)
= ũ1 + ṽ1

3

(−1

1

)
(46)

⇒
(

ũ1

ṽ1

)
= 1

9

(
8ũ0 − ṽ0

7ṽ0 − 2ũ0

)
,

(
ũ2

ṽ2

)
= 1

3

(
2ũ0 − ṽ0

3ṽ0

)
and with (44)(α′ = α′′ = 0.5),(

ũ1

ṽ1

)
−

(
ũ0

ṽ0

)
= ũ1 + ṽ1

4

( −1

0

)}
⇒ ũ1 + ṽ1

4
= ũ0 + ṽ0

5(
ũ2

ṽ2

)
−

(
ũ1

ṽ1

)
= ũ1 + ṽ1

4

( −1

0

)
(47)

⇒
(

ũ1

ṽ1

)
= 1

5

(
4ũ0 − ṽ0

5ṽ0

)
,

(
ũ2

ṽ2

)
= 1

5

(
3ũ0 − 2ṽ0

5ṽ0

)
.

The solid lines in the Figs. 17 and 18 show the exact steady state solutions ofũ andṽ, while
the dotted ones are the upwind solutions (46) withα′ = 1 andα′′ = 0 and the dashed lines
those of (47) withα′ = α′′ = 0.5. Forα′ = 1 andα′′ = 0 we observe a non-constant ˜v which
is constant in the exact solution and in the solution withα′ = α′′ = 0.5. Further the solution
of ũ is much more accurate withα′ = α′′ = 0.5. We could show (Figs. 17 and 18) that the
same phenomena of the combustion test case arise also in the steady state solution of this
simple system and that the results become much better, if the source terms are distributed
to the cell interfaces with the same weights.

The exact solution (bold lines), the numerical solution withα′ = α′′ = 0.5 (dashed lines),
which corresponds to the RHR solution withα = 0.5, and the numerical solution with
α′ = 1 andα′′ = 0 (dotted lines), which is equal to a conventional upwind scheme, are
shown. Opposed to the conventional upwind scheme, the RHR scheme captures the jump
in ũ and the constancy of ˜v correctly.

To avoid the numerical phenomena discussed above for the conventional upwind scheme,
α must be equal for all equations. Further the von Neumann analysis for the RHR solver in
1D and 2D with the explicit Euler method for the time integration shows that the stability
conditions forα (for positiveu andv) are 0.5≤ α ≤ 1 in 1D (35) and 0.75≤ α ≤ 1 in 2D (39).
In 1D, the RHR solver has proved to be more robust withα = 1 than withα = 0.5. To
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FIG. 17. Steady state solutioñu of (46) and (47): exact solution (bold line); numerical upwind solution with
α′ = 1 andα′′ = 0 (dotted line); and numerical solution withα′ = α′′ = 0.5 (dashed line).

overcome stability problems for 2D subsonic flow even withα = 1, we used smoothed
source terms (end of Section 5; for the time integration (11) the non-smoothed source terms
are used) to compute the inviscid fluxes with the RHR solver (10).

9. RESULTS FOR STEADY FLOW

9.1. 1D Premixed Laminar Flame

We consider the discussion of Section 3 for the 1D test case of a premixed laminar flame.
The dashed lines in Fig. 3 show the steady state results obtained with the RHR solver with
αi = 0.5 for the 1D flame test case introduced in Fig. 2. The solid lines in Fig. 3 show the

FIG. 18. Steady state solution ˜v of (46) and (47): exact solution (bold line); numerical upwind solution with
α′ = 1 andα′′ = 0 (dotted line); and numerical solution withα′ = α′′ = 0.5 (dashed line).
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FIG. 19. The 2D Euler test case without source terms; injection in channel flow.

steady state results obtained with the characteristic based Riemann solver. The temperature
plots are almost the same with the RHR and the characteristic based approximate Riemann
solver. But with the RHR solver the mass flux is constant, no pressure peak can be observed
and the flame velocity (i.e.,u(x = 0)) of the dashed plot is closer to the value by [25]
which is about 0.522 m/s. In the pressure plot of Fig. 4, which is shown with another scale,
a slight pressure decrease through the flame can be observed which corresponds to the
Rankine–Hugoniot jump conditions.

Figure 3 shows that the RHR solver leads to much more accurate steady state results in
1D than a conventional Riemann solver.

9.2. Injection in 2D Inviscid Channel Flow

The new approach of a flux solver has been tested for the homogeneous compressible 2D
Euler test case which is introduced in Fig. 19. A tube containing the main flow with inlets at
the left and right walls where fluid is injected is considered. In shock free steady inviscid flow,
the total pressurep0 = p(1+ ((γ − 1)/2)M2)(γ /(γ−1)) is constant along streamlines. Thus,
the incompressible total pressureptot = p+ (u2 + v2)ρ/2, by which we approximatep0 for
low Mach number flow(Mmax≈ 0.1 here), is approximately constant along streamlines.
The right plots of Fig. 20 show that this is fulfilled very well, if the RHR solver is used
(an equidistant 16× 26 grid was used for only one symmetry half). However, the result
obtained with a conventional Riemann solver contains non-physical pressure peaks (left
plots of Fig. 20) due to neglecting 2D effects. In Section 5 we showed the analogy between
source terms in 1D and multidimensional effects if dimension decoupling is applied. This
explains the non-physical solutions in homogeneous 2D Euler simulations (Fig. 20, left). The
numerical error of conventional Riemann solvers reminds one of the carbuncle phenomenon
in supersonic blunt body computations [22]. Taking 2D effects into account, our RHR solver
computes the turning of the injected flow correctly (Fig. 20, right).

9.3. 2D Laminar Bunsen Flame

The RHR solver also leads to more accurate solutions of the 2D combustion test case
of Fig. 21 which shows an infinite series of laminar Bunsen flames. The same one step
mechanism (5) of the 1D flame in Section 3 and Subsection 9.1 and a 16× 21 grid were
used (for one symmetry half only). Figure 22 shows the velocity vectors and the temperature
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FIG. 20. Total pressure (surface and contour plots) and velocity field; RHR solver (right); conventional
Riemann solver (left).

contour plots of the steady state results obtained with a conventional Riemann solver and
with the RHR solver, respectively. The reactant mass fraction contours of the two solutions
are plotted on top of each other in Fig. 23. The numerical flame shapes correspond very
well to the approximate analytic solution of the flame contour (dashed lines; the numerical
flame velocity of the 1D test case with 20 grid points was used). But already this figure
shows some differences between the results. Much larger differences between the pressure
fields p− pout of the two solutions are shown in Fig. 24. The same solutions are plotted
from another view point and with different scales in Fig. 25. While the results obtained with
a conventional Riemann solver (left plots of Figs. 24 and 25) show pressure differences of
about 150 Pa the results obtained with the RHR solver show pressure differences of only
12 Pa (right plots of Figs. 24 and 25). The pressure decrease of about 2 Pa across the flame
in Fig. 25 corresponds precisely to the results in Fig. 4 of the 1D test case. Additionally
there is a global pressure decrease along the symmetry plane of the Bunsen flame due to
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FIG. 21. The 2D combustion test case; an infinite series of Bunsen flames.

FIG. 22. Temperature contour plots with analytic solution and velocity field; RHR solver (right); conventional
Riemann solver (left); approximate analytic solution (dashed lines).

FIG. 23. Mass fraction contour plots with analytic solution; RHR solver (solid lines); conventional Riemann
solver (dotted lines); approximate analytic solution (dashed lines).
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FIG. 24. Pressure surface plots; RHR solver (right); conventional Riemann solver (left).

the higher gas velocity at the top of the flame. If we notice that the pressure differences in
the left plots of Figs. 24 and 25 are about 75 times the dynamic pressure of the unburnt
gas at the bottom of the flame, it becomes clear that such large inaccuracies in the pressure
field induce inaccurate streamlines and therefore the flame shape can become inaccurate.
In Fig. 26 contour plots ofu andv are shown. The right and left symmetry halves show
the results obtained with the RHR solver and a conventional Riemann solver, respectively.
Corresponding to the pressure fields, also their differences are considerable. Finally the
pressure field, velocity vectors, and the reactant mass fraction contours of a simulation
with far field boundary conditions at all boundaries (we have used Neumann boundary
conditions) except for the unburnt gas at the southern inlet (Fig. 27) are shown in Fig. 28.
Although the pressure and velocity fields differ very much from the solution of the test case
with the infinite series of Bunsen flames, the flame shapes look similar.

FIG. 25. Pressure surface plots; RHR solver (right); conventional Riemann solver (left).
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FIG. 26. Velocity (x-component: left;y-component: right) contour plots; RHR solver (solid lines); conven-
tional Riemann solver (dotted lines).

It is even more important to obtain an accurate pressure field if acoustics in flames is to
be studied and it is obvious that such huge errors as shown in the left plots of Figs. 24 and 25
will corrupt the results. It is possible to reduce these errors by a grid refinement but it is
much cheaper to apply the RHR solver.

10. RESULTS FOR UNSTEADY FLOW

10.1. Sound Generation by Colliding Flames

The following 1D test case suggested by Professor G. Searby [26] shall demonstrate that
the RHR solver allows us to make numerical studies of acoustics produced by two colliding
flames in a tube. The same flame as in Fig. 3 was used but due to stability problems with
α = 0.5 the source term was distributed to the upwind side of the cell (for positive velocities
to the left else to the right cell interface).

FIG. 27. The 2D combustion test case; far field boundary conditions.
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FIG. 28. Pressure field, mass fraction contours, and velocity vectors with far field boundary conditions using
the RHR solver.

The collision of two flames in an infinitely long tube is studied. As the gradients at the
boundary are assumed to be small, Neumann boundary conditions have been applied on
U in order to have no reflections. The computational domain is the part of the tube where
the collision of the flames takes place and is 2 mm long (only one-half of the symmetric
field). The mesh has 25 grid points and the time step was 8× 10−8 s (the maximum CFL
number was about 0.8). In Fig. 29 the flames before the collision are sketched. They do
not interfere yet, and the states in the areas on the left and right sides of the flames and
between them are constant. After the collision (Fig. 30) two expansion waves travel away
from the center with a constant speeduwave, and the fluid between them is at rest. With the
analytical solution derived in [10] one obtains 848.63 m/s foruwave, 1793.15 K forTcenterand
−470.86 Pa forpcenter− p∞, if the expansion waves are approximated by discontinuities.

With this we have a good estimate of the values in the center after the collision. To say
more about the pressure during the collision the linear dependence of the acoustic pressure
p− p∞ on q̇ the rate of heat released in the domain [4, 26], is investigated. Thus, we check
pcenter− p∞ ≈ c1q̇ + c2 wherec1 andc2 are two constants. At the beginningq̇ and the
pressure in the center are constant. As soon as the preheat zones of the two flames interfere,
the reaction rate anḋq grow and therefore the pressure level increases. After a whileq̇
becomes smaller because there is less and less fuel left until it is consumed at all. Thenq̇
is zero, and the pressure(pcenter) remains constant.

Figure 31 shows the temperature, the velocity, and the mass fraction of the product at three
different times. In Fig. 32 the pressure profilesp− p∞ at four different times are presented.

FIG. 29. Test case of two interacting flame fronts generating sound; before the collision.
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FIG. 30. Test case of two interacting flame fronts generating sound; after the collision.

To show that the simulation fulfills the criterionpcenter− p∞ ≈ c1q̇ + c2, pcenter− p∞, and
c1q̇ + c2 with appropriate constants

c1 = pcenter(t = 0) − pcenter(t → ∞)

q̇(t = 0)
and c2 = pcenter(t → ∞) − p∞

are shown in the same plot as a function of time (Fig. 33). As expected one can see only
one curve. The difference(pcenter− p∞) − (c1q̇ + c2) is shown in Fig. 34. The numerical
values in the center at the end of this simulation are−471.17 Pa for the pressure difference
pcenter− p∞ (the analytic value is−470.86 Pa) and 1793.11 K for the temperature (the
analytic value is 1793.15 K). The velocity is zero as it should be. Thus the numerical results
correspond almost precisely to the analytic ones.

10.2. Oscillating Bunsen Flame

The interaction of acoustic waves with a Bunsen flame was suggested by Professor
G. Searby [6, 26]. At the same time we wanted to check whether the scheme with the RHR
solver remains stable for this unsteady 2D computation.

The initial state was the steady 2D Bunsen flame with farfield boundary conditions of
Fig. 27 but the velocity of the cold mixture at the outlet of the tube was 1.5 m/s and started

FIG. 31. Two interacting flame fronts generating sound in an infinitely long tube; temperature, velocity, and
mass fraction plots at three different times.
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FIG. 32. Two interacting flame fronts generating sound in an infinitely long tube; pressure plots at four
different times.

to oscillate at the timet = 0 s with a frequency of 10,000 Hz and an amplitude of 1 m/s
(Fig. 35). Experiments by Hahnemann and Ehret [9] use a strong sound source located
upstream in the tube and their measurements show that the flame contours are very close to
sound potential surfaces. Figure 36 shows mass fraction isolines and velocity fields of our
simulation at the times 0.014025, 0.01405, 0.014075, and 0.0141 s in the same plot (the
isolines of the results att = 0.0141 s are solid while the others are dotted). Additionally
the isolines of the analytic solution of the sound potential surfaces [16, p. 378] are shown
(dashed lines) and like in Hahnemann and Ehret’s axisymmetric experiments one can see
that near the plane of symmetry the flame contours are close to one of those semicircles.
Figure 37 presents the pressure as a function of time which is periodic in time. The main
differences between our numerical and Hahnemann and Ehret’s experiments are first that
our simulation was 2D and not axisymmetric like the physical experiments; second that
the diameter of Hahnemann and Ehret’s tube containing the reactive gas mixture was 5
times larger (i.e., 10 mm) than in our simulation; third that we have used a frequency of
10,000 Hz instead of about 5000 Hz; and fourth that the one step mechanism (5) might not
properly describe the propane air combustion of the experiment. In our computation the
flame was already flattened after about 5 oscillation cycles which could not be observed in
Hahnemann and Ehret’s experiments.

FIG. 33. Two interacting flame fronts generating sound in an infinitely long tube; pressure and heat release
as functions of time.
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FIG. 34. Two interacting flame fronts generating sound in an infinitely long tube;pcenter− p∞ − (c1q̇ + c2)

as a function of time.

FIG. 35. Unsteady 2D combustion test case; oscillating Bunsen flame.

FIG. 36. Oscillating Bunsen flame at 4 different times within one oscillation; mass fraction contours and
velocity vectors; analytic sound potential surfaces (dashed lines).
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FIG. 37. Oscillating Bunsen flame: pressure at the nozzle as a function of time.

For higher velocities of the reactive mixture (e.g., 2 m/s instead of 1.5 m/s) no flattening
of the flame could be observed but an oscillation with the acoustic frequency. Our physical
interpretation of this phenomenon is the following: Since an acceleration field has a stabi-
lizing effect on a premixed flame the flame tends to achieve the shape of an isopotential
surface of the acoustic field. This is generally impossible because the total surface of the
flame is almost constant for a given mean mass flow rate of the reactive gas mixture and
the resulting flame shape is a compromise (Fig. 36). If the difference is too large, the flame
cannot be stabilized by the acoustic acceleration field and will oscillate. This was also ob-
served in the experiments by Hahnemann and Ehret [9]. Nevertheless, the situation there is
different: Only a small change of the flame contour near the root is necessary to compen-
sate the flame surface decrease due to change of the peak size. Therefore the axisymmetric
flame can achieve a shape closer to an isopotential surface of the acoustic field than a flame
in 2D.

For our simulation an equidistant Cartesian grid of 16× 21 points (only one symmetry
half) was used. One oscillation cycle corresponding to 1× 10−4 s and 2000 time steps took
approximately one hour on a SUN SPARC 20 workstation without any attempt to optimize
the code.

11. CONCLUSIONS

A new approach for a flux solver which takes source terms, viscous terms, and multi-
dimensional effects into account and its application to steady and unsteady simulations in
1D and 2D with and without combustion is presented. This work was motivated by a non-
constant mass flux and a non-physical pressure peak in steady 1D flame simulations. These
errors originate in the assumption of Riemann invariants along the characteristics which is
only valid for 1D homogeneous hyperbolic systems. The basic idea of the new solver is to
distribute the source terms from the cells to the interfaces and treat them as discontinuities.
Thus, one obtains hyperbolic conditions within the cells and the idea of Riemann invariants
along the characteristics from the cells to the corresponding interfaces can be applied.
Additionally the Rankine–Hugoniot jump conditions must be satisfied at the cell interfaces.
Solving the nonlinear algebraic system consisting of three Rankine–Hugoniot conditions
and three Riemann invariants leads to the RHR solver (Rankine–Hugoniot–Riemann solver).
Since the laminar flame speed is a function of reaction rate, heat conduction, and molecular
species diffusion, a minimum grid resolution is required. However, it has been shown that
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a much finer grid is necessary for a conventional Riemann solver to keep the errors in the
pressure field small (important for simulations of acoustics), whereas a much coarser grid
can be used if the RHR solver is applied (cf. Figs. 3, 24, and 25). Opposed to other flux
solvers the RHR solver allows us to make a physically based dimension decoupling if the
flux differences of the other space directions are considered as a part of the source term. A
2D test case of an infinite series of laminar Bunsen flames shows that much more accurate
results are achieved applying the new flux solver instead of a classical Riemann solver. For
subsonic injection in a channel, a 2D Euler test case without source terms, the treatment
of the 2D effects leads to a much more accurate total pressure field. An unsteady 1D test
case of two colliding flames shows that the RHR solver allows us to simulate acoustics
produced by combustion and an unsteady 2D test case demonstrates that it is possible to
simulate the flattening of a Bunsen flame by an acoustic field. An open question concerns
the stability of the multidimensional scheme with the RHR solver. For our 2D simulations
a spatial smoothing of the modified source terms was necessary.

By modifying the source terms, the RHR solver can be extended to axisymmetric flow
with or without swirl, to flow in a rotating frame of reference, to 3D, and to structured
meshes with curvilinear coordinates.

This approach is more general and can be applied to solve other systems of partial
differential equations which can be expressed as hyperbolic conservation laws with source
terms.
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