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A new approach for a flux solver is introduced, which takes into account source
terms, viscous terms, and multidimensional effects. The basic idea is to distribute
the source terms, which also contain the viscous terms and multidimensional effects,
from the cells to the cell interfaces. Then the fluxes on both sides of a cell interface are
determined by the Rankine—Hugoniot conditions and a linearized Riemann solver.
The resulting Rankine—Hugoniot—Riemann (RHR) solver yields much more accurate
results than conventional Riemann solvers for steady premixed laminar flames in
1D and 2D and a steady 2D inviscid channel flow with injection. Unsteady flow
simulations of two colliding flames producing sound and of acoustic oscillations
flattening a 2D Bunsen flame demonstrate that the new flux solver is able to compute
acoustic effects in flames accurately. This approach for a flux solver is more general
and can also be applied to solve other partial differential equations which can be
expressed as hyperbolic systems with source terms ex- or including higher spatial
derivatives, e.g., for the shallow water equations and for the magnetohydrodynamical
equations. (© 1998 Academic Press

1. INTRODUCTION

Inrecentyears, the development of numerical methods for combustion problems has
driven by an increasing industrial demand for fast and accurate computations of rea
flow [21]. Considering the interaction of acoustics and combustion adds another lev
complexity. However, the control of thermoacoustic instabilities is decisive for the s
operation of rocket motors and modern gas turbines [13]. Therefore, we have start
develop a numerical method for the investigation of thermoacoustics and to apply it t
computation of acoustic effects in premixed laminar flames. These flames are charact:
by low Mach numbers oD (10-3) and small pressure changes of a few Pa. Interactic

575
0021-9991/98 $25.00

Copyright© 1998 by Academic Press
All rights of reproduction in any form reserved.



576 JENNY AND MULLER

between acoustics and flames are governed by the compressible Navier—Stokes equi
for reacting gas mixtures with source terms describing chemical and heat release rates
Considering acoustics for low Mach numbévks means a drastic time step reduction of
O(M) compared to solving the low Mach number equations, which allow for arbitrat
temperature and density changes but from which acoustics is removed [23, 7].

Before presenting our new numerical approach to simulate thermoacoustics, we <
briefly review existing methods for computing related problems governed by non-hon
geneous conservation laws. When computing stiff reaction waves, the spatial and temy
resolution has to be chosen sufficiently high to avoid non-physical wave speeds. Tf
waves have the structure of a fluid dynamic shock that raises the pressure to some
value, followed immediately by a reaction zone that brings the pressure back down to a
equilibrium value. On coarse grids it is not possible to resolve this combustion spike and
stiff source terms the numerical wave speed is totally wrong unless the space step isr
extremely small. Examples and analyses of the numerical simulation of that problem
given by Oran and Boris [21], LeVeque and Yee [17], Lindet{20], and Klingenstein [14].

Chorin [3] analyzes the random choice method by Glimm, shows its usefulness
reacting flow, and carries out applications in one dimensional time-dependent reac
flow. In this method the solution is first approximated by a piecewise constant function
each time step. It is then advanced in time exactly and new values on the mesh are obt:
by sampling. The advantage of this procedure is that the interaction of the flow and
chemical reaction can be taken into account when the Riemann problem is solved.

Roe [24] shows the necessity to modify the upwind schemes for non-homogene
hyperbolic conservation laws. He approximates the integration along the characteris
taking the source terms into account and shows how to extend such schemes to hi
order.

Sweby [29] points out that the TVD (total variation diminishing) property used i
high resolution schemes for homogeneous conservation laws is inappropriate for pi
lems with source terms. He utilizes a transformation of dependent variables to reduce
non-homogeneous problem to homogeneous form and suggests to apply the TVD sct
only to the fluxes of the homogeneous system and to treat the source term separately.

Bermudez and Vazquez [2] propose proper upwind discretizations of the source ter
They point out that conservativity is not guaranteed when solving the 1D shallow wa
equations with source terms although a conservative formulation is used. Therefore
introduce a conservation property. In [32] Vazquez extends this method to the 2D shall
water equations.

Colella [5] takes into account the tangential flux derivatives to construct the left and ri
states atthe cell interfaces at the mid-time level. The resulting 1D Riemann problems nor
to the cell interfaces are solved by Godunov’s method to determine the normal fluxes.
tangential flux derivatives are approximated by Godunov’s method as well.

Instead of increasing the resolution or upwinding the source terms, some authors |
proposed flux discretizations, which take the source terms into account. LeVeque [18,
has developed a scheme where a flux jump at the volume center equals the source tert
shows very convincing solutions of the 1D and 2D shallow water equations.

In the present article, we present a new flux discretization which does not only take
source terms into account but also the viscous terms and multidimensional effects. Oul
proach was motivated by correcting a non-physical pressure peak and a large mass flow
when computing a steady premixed laminar flame using a conventional Riemann sol
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These numerical errors are not related to the ones appearing near contact discontir
in gas mixture simulations with conservative schemes, if the gases on both sides of tt
terface have different temperature and different ratios of specific hgaf], because the
errors in flames also occur,jfis constant. Since the errors in flames even occur in 1D, th
are neither related to similar numerical artifacts at moving shear waves [30]. Consideri
simple model equation, we shall see that the numerical problems of conventional Rien
solvers for hyperbolic systems with source terms are caused by discretizing the invi
fluxes, as if the equations were homogeneous. Most upwind schemes for the compre
Euler and Navier—Stokes equations are based on solving one dimensional Riemann
lems at the cell interfaces and make use of conventional homogeneous Riemann so
As mentioned above, if such a conventional Riemann solver is applied to compute a st
premixed laminar flame, a non-physical peak in the pressure profile and a large error i
mass flow arise in the results, even if a conservative scheme without source term in the
tinuity equation is used [11]. These numerical phenomena become much more compl
higher space dimensions and exist also in a weaker form in 1D Navier—Stokes computs
due to the viscous terms and in multidimensional homogeneous Euler simulations dt
the multidimensional effects. In many flame computations such phenomena are reduc
using fine meshes and higher order schemes [8]. Generally these errors are negligibl
if acoustic phenomena in flames are to be simulated, they can become dominant. In
of the importance only a few people seem to have studied the problems mentioned &
and hardly any pressure plots of flames are published, except for [8].

To discretize the equations the cell centered finite volume method is used here.
the time integration the explicit Euler method is applied with an implicit treatment
the source term because of its stiffness. The basic idea of our approach for a flux s
is to transform the volume integrals of the source terms, which also contain the visc
fluxes, into surface integrals. This leads to non-homogeneous Rankine—Hugoniot condi
[15] at the corresponding cell interfaces, because the flux jump corresponds to the s
added at a cell interface (Fig. 1b). If no source is added at the cell interface, homogen
Rankine—Hugoniot conditions apply (Fig. 1a). The remaining conditions to determine
state<C; andC, on the left and right sides of a cell interface are provided by linearizing t
characteristic relations. Thus, to compute the fluikesind fc, at a cell interface, anonlinear
system for six unknowns has to be solved, where three equations come from the linea
Riemann invariants and three from the Rankine—Hugoniot jump conditions. Because

a)

cell
interface

FIG. 1. lllustration of Rankine—Hugoniot conditions (a) homogeneous, flux jump equal zero; (b) non-hor
geneous, flux jump equal source.
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construction, we call the new non-homogeneous Riemann solver the “Rankine—Hugon
Riemann solver,” in short “RHR solver.” Ifc, is used as right flux in the left cell and if

fc, is used as left flux in the right cell, the source term is properly taken into account
the flux discretization. A steady 1D test case of a premixed laminar flame demonstr:
that non-physical pressure peaks and non-constant mass flow profiles can be avoided
this approach. Further it is shown how the multidimensional effects can be taken i
account using the RHR solver. Applying dimension decoupling itis possible to consider
differences of the fluxes in the other space dimensions as parts of the source terms.
the new solver becomes a multidimensional Riemann solver treating the cross fluxes
physical way using the Rankine—Hugoniot jump conditions. Results of two dimensiot
Bunsen flames and of a 2D inviscid channel flow with injection show that the RHR solv
leads to much more accurate results than a conventional Riemann solver. Further ¢
simulation of two colliding flames demonstrates that the new solver also works for unste
flow. Finally a 2D simulation of acoustics flattening a wedge-shaped Bunsen flame t
semicircle shows at least qualitatively a good agreement with experimental measurem

Further details on the derivation, analysis, and application of the new approach for a1
solver are presented in the Ph.D. thesis of the first author [10].

In Section 2 the non-homogeneous Euler equations are presented, which are use
our analysis. Section 3 indicates the motivation for this research. The new approach
a flux solver is presented in Section 4, and its extension to multi-dimensions is showt
Section 5. In Section 6 the accuracy of the inviscid terms in the steady state is discu:
and in Section 7 the stability limits for the scheme are derived. A 1D non-homogene
hyperbolic model system is used in Section 8 to study the spatial accuracy for syste
Simulations of a 2D homogeneous Euler test case are discussed in Section 9. Finally re
of premixed laminar 1D flames and 2D Bunsen flames are presented in Section 9 (ste
and in Section 10 (unsteady with acoustics). Conclusions are given in Section 11.

2. THE NON-HOMOGENEOUS EULER EQUATIONS

For simplicity and without loss of generality the non-homogeneous 1D Euler system

ouU of
T, 1
at + ax @)
with
P pu R
U=|pul|, f=| puv’+p |, and S=|M]|, 2
pE U(pE + p) Q

will be discussed in our first studies to explain the basic idea. The species contint
equations are not shown as it is only necessary to look at the global continuity equat
Later, when the extension to more dimensions will be explained, the 2D system

ou ot ag

=4 —S 3
at+ax+ay 3)



RANKINE-HUGONIOT-RIEMANN SOLVER 579

with
o pu pv
pu puZ+p puUv
= s f = s g = 2
pv puv pv°+p
pE u(pE + p) v(pE + p)
and 4)
R
M
S= N
Q

will be used. The symbols, u, v, p, andE denote the density, the and they-components
of the velocity, the pressure and the total energy per unit mass, respediyély.N, and

Q denote mass- andy-momentum, and total energy source rates. It is important to noti
that the non-homogeneous Navier—Stokes equations can be treated as a non-homog
Euler system, if the viscous terms are considered as a part of the sourc& term

3. MOTIVATION

We use the following simple 1D test case of a steady, premixed laminar flame [8] (Fic
to show the motivation for this work. Using SI units, the reaction kat# the one step
mechanismA — B is

7500) ’ (5)

k=8x 106exp(—?

whereT is the temperature. The molecular weigis andWg are 0.029085 kg/mole, the
viscosityu is 7 x 10~ Ns/n¥, the Prandtl number Ps (1.cp) /A, and the Schmidt number
Sc=p/(Dp) are 0.7 § is the thermal conductivity) the diffusion coefficient, and, the
specific heat at constant pressure), the formation enthalpy of sp&eied B is zero and
H3 = c,Ws 1500 K, respectively, where, = 1000 J/(kg K). The ratio of specific heats is
y = 1.4. At the inlet we have the mass fraction of spede¥, =1 andT =300 K. Since
pinUin Must be equal tegUoy: in the steady state, we add

PoutUout — LinUin
Pin — Pout
to the velocity field after each time step. Thus the mass within the computational dor

keeps conserved and the flame is forced to stay within the computational domain. A
outlet the pressure is set equal ta 10° Pa.

u. u
n out

— ™ SpeciesA SpeciesB —»
Pin unburnt burnt

flame

pout

]
1
1

\j

FIG. 2. The 1D test case of a steady, premixed laminar flame.
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FIG. 3. Conventional Riemann solver (solid lines); RHR solver (dashed lines); [25] (markers).

The steady state results obtained on a grid with 50 equidistant mesh points with a con
tional Riemann solver are presented in Fig. 3 (solid lines) where the tempefaueiocity
u, mass flowpu, and pressur@ — poy: profiles are shown in Sl units. For simplicity a char-
acteristic based Riemann solver (Subsection 4.1) was used. But the same phenomen
be observed if Roe’s or an exact Riemann solver is applied. Although there is no sot
term in the global continuity equation and a conservative formulation has been used,
mass flow is not constant as it should be. Further a non-physical pressure peak in the f
zone of about 60 Pa can be observed which is about 400 times the dynamic pressu
the gas on the left side of the flame. To decrease these errors one could make an expe
grid refinement. The markers in the temperature and velocity plots show the result of
unsteady simulation on a mesh with 400 grid points [25].

The origin of these numerical phenomena, which can become much more dramatic in
or three space dimensions, can be found in the wrong flux evaluation at the cell interfe
when employing a conventional Riemann solver. In Subsection 4.2 the RHR solvel
introduced which allows us to avoid the numerical errors and to produce correct res
shown in Fig. 3 (dashed lines). The correct pressure distribution obtained with the R
solver is enlarged in Fig. 4.

Pressure

—2 .
O.000 O.002 O.004
X

FIG. 4. p — pou With RHR solver.
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In this paper the discretization of the inviscid terms is only first order in space. This d
not influence the numerical phenomena qualitatively but it allows us to isolate the origil
the problems.

4. NEW APPROACH FOR A FLUX SOLVER

In Subsection 4.1 a characteristic based approximate Riemann solver is outlined.
Rankine—Hugoniot—Riemann (RHR) solver, which takes source terms and viscous fl
into account, is introduced in Subsection 4.2. In Subsection 4.3, the RHR solver s illustr
for the linear advection equation.

4.1. Characteristic Based Approximate Riemann Solver

The characteristic based Riemann solver [27, 28] which is presented next works almc
well as an exact Riemann solver or an approximate one like Roe’s for small Mach numt
while for supersonic flow an exact Riemann solver or for example Roe’s approxin
Riemann solver are much better suited. For simplicity first order in space will be discus
To achieve higher order in space the MUSCL ansatz [31] can be applied.

At the beginning of a time step constant values are assumed in the left and right «
i —1 andi of the cell interfacex;_1/» (first picture in Fig. 5). These states in the aréas
and B (third picture in Fig. 5) defining the Riemann problem are determined by the ¢
averagedJ! ; andU! in the cellsi — 1 andi at timenAt. The second picture of Fig. 5
shows the approximate state after the tixtewhere the expansion fan is approximated b
a discontinuity. Here we assume 1D subsonic flow wigh> 0. As soon as the states in the
areaC are known one can figure out the fluxes at the cell interface. The linearization of

|

((h+ 1A

R T P

® 0] ®

9

®

FIG. 5. Characteristic based approximate Riemann solver.
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characteristic relations

c2dp —dp=0 along the characteristic with the spaed
pcdu+dp=20 along the characteristic with the spaed ¢ (6)

pcdu—dp=20 along the characteristic with the spaed- ¢

leads to the linear algebraic system (third picture in Fig. 5)

¢4 (pc — pa) — (pc — pa) =0
PACA (Uc —Up) + (Pc — pa) =0 (7)
pBC (Uc —Ug) — (pc — pg) =0

which can be easily solved fgr, u, and p in the areaC [1]. This 1D approach is also
used for multi-dimensions whererepresents the velocity component normal to the cel
interface. The velocity component parallel to the interface and the mass fractions, if m
than one species are considered, are taken from the upwind side (region A in Fig. 5).

4.2. Rankine—Hugoniot—-RiemarfRHR) Solver

The characteristic based approximate Riemann solver assumes hyperbolic homoger
conditions. But if there is a source term, the assumption to have Riemann invariants i
longer valid, because the characteristic relations (6) will no longer be homogeneous.

The basic idea of our approach for a flux solver is to treat the source terms as sur
integrals instead of volume integrals (Fig. 6). We consider 1D flow in a channel with lheight
The parameted; is the fraction of the source terms in ceetlistributed to the left interface.
The distribution of non-negative fractions and 1— «; to the left and right interfaces,
respectively, requireg to be greater than or equal to zero and smaller than or equal to ol
Thereby, the source terlm\x(«; § + (1 — @i—1)S—1) is located at the cell interfaocg_ 2,
wherehAXS = hAxS(U;) approximates the volume integral of the source t&imcelli.

- . .
- 1 i+
| =
.« — AX__ nly
4 .
hAxAi_l hAx*Si hAx*i_'_1
i i T
- I Al A
—> /A I /oA
. /A /N / \
\ \ Vi \ 5
AA’ N A -~ N V% ~No T
hAx(oci_ISi_1+ (1-0;_,)8. hAx(ai+ISi+l+ (l—ai)Si)

hAx(aiSi+ (1 —ai_l)si_l)

FIG. 6. Source terms distributed to cell interfaces.
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t= (n+1)At

Ax(aiSi+ (1-ai_1)si_l)

FIG. 7. Rankine-Hugoniot—Riemann (RHR) solver.

Thus one obtains piecewise homogeneous hyperbolic conditions in 1D with source t
as discontinuities at the cell interfaces.

In the characteristic diagram of Fig. 5 the source discontinuity at the cell interface wc
be located in the are@. Therefore it is necessary to divideinto the region<; andC,
(Fig. 7). During one time step constant states are assumed within thefaBa®, C;, and
C,. Thus, the states i; andC, are connected by the Rankine—Hugoniot jump condition
These require the differences between the fluxeS;imnd C, to be equal to the source
terms located at the cell interface:

(pu)c, — (pWc, = AX(R + (1 —ai—1)RiZ1)
(pU? + p)c, — (U + p)c, = Ax(@iMj + (L —ai_1)Mi_1) (8)

( . up+3u3) —( - up+3u3> = AX(@ Qi+ (L - Q).
y—1 2 Jg, y—1 2 Jg

Now the conditions are homogeneous and hyperbolic within the cells on both sides o
interface and the assumption of Riemann invariants along the characteristics becomes
Linearizing the characteristic relations (6) for the situation of Fig. 7 yields

caloc, = pa) = (Pc, — Pa) =0
,OACA(U(:1 - UA) + (pq - DA) =0 %
pecs(Uc, —ug) — (Pc, — Ps) = 0.

Equations (8) and (9) constitute a nonlinear algebraic systep fgrandp in the area&;
andC,. Applying the Newton—Raphson method and using good start values (for exam
those from the left and right cells at the tirhe-nAt) one or two iterations are usually
enough. Finally different fluxes for the left and right cells at the interfiacel/2 are
obtained with differences equal tox (e S + (1 — ¢i-1)S_1).

Thus in 1D the only thing one has to do is to distribute the source terms and to rep
the conventional Riemann solver by the RHR (Rankine—Hugoniot—Riemann) solver. |
we chosex = 0.5 for the 1D simulations and for the 2D computatians: 1, if the flow
comes from the left side or from below, respectively. Thus, the source term is distribute
the upwind cell interface, i& =1 is chosen.
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The sign ofu, which is needed for the distribution of the source terms from the cell to tt
corresponding interfaces, is notknown before the fluxes are computed. We have used the
of u obtained with the characteristic based Riemann solver (7). For subsonic flow with
source terms, there is no ambiguity in determiniggn (7). We have chosen the following
strategy: If the approximate cell interface velocitigs, andu; 1> are both positive
(negative) ¢ AXS is distributed to the upstream cell interfage,» (Xi11/2, respectively)
and(1 — ) AXS is distributed to the downstream cell interfage; > (Xi—1/2, respectively).

If uj_1/2U;41/2 <0 and not bothu;_1,» andu; 1/, are zero, we satj = Uj_1/2/(Ui—1/2 —
Ui+1/2) ande; AXS and (1 — ;) AXS are distributed to the left and right cell interfaces,
respectively. In that case, the distribution of the source term is biased towards the
interface with the larger modulus of the cell interface velocity;lf;/, =ui_12, =0 we
apply the characteristic based approximate Riemann solver to determine the momer
flux, i.e., Pit12 and pi_y/2.

Itis important to notice that tis not necessary to store both flikes _1,2 and(fc,)i—1/2,
because

(fea)i_1)p = (fer)i_yp + AX(@iS + (1 = 0i—DSi-0).

The update of the cell averaged variables can be done in the same way as with a convent
Riemann solver if either

fi_io = (fcl)i,l/z + AX(1—ai—1)S1
or (20)
fi_io = (fcz)i,l/z — AXei §
is used as numerical flux and no additional variables have to be stored;_frar> 0 the
mass fractiongYi)c, are given by(Yi)c, = (Yx)i—1 and foru;_1,» < 0 we use the relation
Y, = (Yw)i. In both situations the differences between the flyxe¥; in the area$C;
andC, are equal to the corresponding source term discontinuities and Eq. (10) holds ac

the other components of the flux vecfor
The following equation shows an explicit Euler step:

At

Urtt = up + H( "1j2 = flhayp) + ALS
n At n n
== Ui + H fi71/2 + A)(OliSﬂI - ( i+l/2 - AX(l - 01,)5?) . (11)
5 5
<f02>i—1/2 <f01>i+1/2

The superscriph means that the values are taken at the tireenAt. For the time in-
tegration any other scheme can be applied. Here the explicit Euler method (11) is u
except for the stiff source terms of combustion which are treated implicitly according
SH=3"+ 98" /0U (UM —U M with U’ = (o1, ..., pn.) - p1, - - -, Pn, denote the partial
densities ohg species. Notice that for simplicity the vectdrinstead ol is used to derive
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the Jacobian. This is much simpler and is good enough to stabilize the scheme. For th
evaluation (10), the source terms are treated explicitly here.

The difference of the fluxes at the cell interfaces is exactly equal to the source t
located there. That's the novel feature of our approach: we allow for different fluxes at a
interface to accommodate the flux jump caused by adding mass, momentum, and e
via the source term at the cell interface. For explicit Euler time integration, we show v
(11) that a conservative scheme is obtained if one uses the fluxes given in (10) for
sides of the volume interface. Therefore our scheme is conservative. Note that we o
in (10) fc, = fc, = fc, where state€€ is given by the characteristic based Riemann solvi
(Subsection 4.1), i5=0.

At the beginning of a time step the viscous fluxes are computed at each cell interfac
the Navier—Stokes equations are solved. In each cell, the difference of the viscous fl
over the right and left cell interfaces is added to the source terms. This is no modifica
for conventional flux solvers. But for the RHR solver it is, because the source terms
taken into account for the computation of the inviscid fluxes.

4.3. RHR Solver for Nonhomogeneous Linear Advection Equation

Let us consider the scalar 1D conservation law

ou af(u)
§+ ax

S (12)
with the source tern= S(x) independent of the conserved variablef (u) is the flux

function.
First, we are interested in the steady state

df(u(x))

5 = S (13)

Since we assume the characteristic spki@)/duto be positive, we prescribe the bound-
ary condition

U(Xa) = Ua (14)
at the left boundary,. Integration of Eq. (13) yields

fux) = f(uy) + / S(x) dX. (15)

Assuming that the flux functior is invertible, we obtain the exact steady state solution

u(x) = f‘1<f(ua)+/ S()T)d)?). (16)

As an example, we consider the linear advection equation with a piecewise linear sc
term,

f(u) = au, a7
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0, Xa < X < Xp
| Sx = xp), Xp < X < Xc
0= s06-0.  x=x=x 4o
0, Xd = X,

wherea and S, are positive constants amxgd — xp = Xg — X, i.€., S(X) is continuous.

Letus consider the intervaty, x4] as celli with cellinterfaces 1,2 = Xp andx; 11,2 = Xq.
Suppose we distribute the exactly integrated source tex§ = fx’:j/; S(x) dx to the up-
stream cell interfac _,,>. We obtain the RHR solver witta = 1:

At
it = ot - 2 (auc) s - (aue,)] s . +

As u is a Riemann invariant on the characteristi¢/dt = a, we get

(UCl)in+1/2 =uf and (UCl)in—1/2 =Uu,

assuming a constant reconstruction, igx, nAt) ~ul’ for x in (Xj_1/2, Xi+1/2), and the
CFL condition O< aAt/Ax < 1. The Rankine—Hugoniot condition yields

(aucz)i“% = (aucl)in,% + AX§ = au' ; + AXS.
Thus, (19) becomes

At
UMt =P — x [au’ — (au®_; + AXS)]. (20)
This scheme corresponds to the first-order upwind method. In the steady state, we hav
discrete form of (13):

au —aui_1

=S (21)

u corresponds to the exact steady state solutiar=axy. If we reconstruct the cell average
ui' as a constant function in cellwe observe that the total flux jump over ceis located
at the upstream cell interface (Fig. 8).

Fora =1/2, half of the source term is distributed to the left and right cell interface:
respectively. The steady state fluxes are illustrated in Fig. 9. We see that in the steady
we have

ay —au_; au,;—ay 1

= = =S. 22
AX AX 2S (22)
u; approximates the cell average betterdet 1/2 than fore = 1. In this particular example

u; is equal to the exact cell average
1 Xiy1/2

— u X) dx.
AX exact( )

Xi—1/2

For the Burgers equation, i.ef.(u) = u?/2 in (12), we obtain similar results with the RHR
solver compared with the exact solution.
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a u_(_x)

RHR

$106c2)°

X Xb X Xd

FIG. 8. RHR flux fora =1 and exact flux.

Inthe related approach by LeVeque [18,19], the total flux juxixg is located at the cell
center. The flow states in the left and right cell halves can be determined by the additi
requirement of conservativity af in a cell. The left and right states in all cells define
homogeneous Riemann problems at the cell interfaces. Those are solved by a conven
Riemann solver.

In the steady state, the RHR solver satisfies the Rankine—Hugoniot condition

fu) — f(ui—y) =1 —a)AX§_1 + aAXS. (23)

If we assumey; andu;_1 to approximatel atx = xj_1/2 + o AX andx = Xj_1» — (1—a) AX,
respectively, relation (23) exactly holds for the exact steady state solution previddd
ora =0. For O<a < 1, relation (23) holds only approximately, unless the right hand si
of (23) is equal to the integral dd(x) from xj_1/» — (1 — &) AX 10 Xiy1/2 + ¢ AX. Thus,
the parametew can also be interpreted as the fraction of the spatial increment in ce

a u£x)

RHR pd
L 84 (%c)°

S(x)

x Xb Xc Xd

FIG.9. RHR flux fora =1/2 and exact flux.
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(i.e.,x — xi_1/2 =« AX) where the conserved variahlés approximated by the cell average
u; to evaluate the fluxX (u;).

Next, let us consider the steady state problem in a frame of reference moving w
constant velocitys < 0 to the left. Suppose the initial condition corresponds to the stea
state solutionus. The exact solution reads

U(X,t) = us(X +st) —s. (24)
If we solve the problem

ou ou =«
ﬁ_i_(a__s)a_x:S(X,I:):S(X—i-st) (25)

with the RHR solver, we obtain for the first time level

ul = u?—%(((a—s}uq)&% — ((a—s)ucz)iof%). (26)
Since
(@=9uc,); 1, — (@=9ug,);, , = (1 - @)AXS 1+ ¢ AXS,
(ucl)iofl/2 =u’, and (ucl)ioﬂ/2 =u? for0< (a—s)At/Ax <1,
we get

P=uf— %((a -9 — (@—9ul; + 1—)AXS , +2AXT)). (27)

Because the discrete initial condition is assumed to correspond to the steady state sol
u? + s obtained with the RHR solver, the following relation holds

al —auw’ ; =a(u’ +s)—a(u’,+s) = 1-)AXF, +aAxS.  (28)

Using (28) in (27) we get

At
ul =ud — H(—S)(Uio —uly). (29)

Equation (29) is the first order upwind discretization of the linear advection equation

u_ sa—u = (30)

ot axX

which correctly describes the advection wfwith the velocity —s. Also for the other
scalar conservation laws and systems the RHR solver works consistently under Gal
transformation.

For systems, the distribution of the integrated source tant; to the cell interfaces
Xi+1/2 proceeds in the same way as for scalar conservation laws. The total integrated so
term is distributed according to the velocity. Since the Rankine—Hugoniot conditions |
are built into the numerical flux, the balance of flux difference and integrated source te
is satisfied in the steady state. Unsteady motion is handled by the Riemann invariants &
cell interfaces.
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For 1D non-homogeneous linear hyperbolic systems, the RHR solveswith/2 coin-
cides with LeVeque’s extension of Godunov’s scheme [18] and Roe’s source term treat
[24]. Even if the eigenvalues of the linear hyperbolic system have different signs and
different from zero, the RHR with any parametet [0, 1] satisfies the Rankine—Hugoniot
conditions in the steady state, whereas a conventional upwind scheme fails to do st
Section 8). Note that the present approach for a flux solver differs from the ones by
[24] and LeVeque [18] in the nonlinear case.

5. EXTENSION TO MULTI-DIMENSIONS

In this section we show the analogy between source terms in 1D and multidimensi
effects, if dimension decoupling is applied.

For simplicity a Cartesian 2D grid is used for the following investigations. It will b
shown that it is possible to treat each row and each column of the grid in Fig. 10 ¢
1D problem, if the approximation of the cross flow fluxes is good enough. The goverr
equations are the non-homogeneous 2D Euler equations (3) and (4).

To convert rowj of the grid in Fig. 10 into a 1D problem it is necessary to replace tl
source term®; j, M; j, N; j, andQ; ; by the modified source terms:

(pv)i,j—12 — (PV)i,j+1/2

Ri=R;+ Ay
M7 = M + (puv)i j—1/2 — (PUV)i j41/2
Ay
NP = Nij + (pv% + Pli.j-172 — (PV% + P)i j11/2 (31)
Ay
Q' =Qi;
n (7 /(y = D)vp+ (0/2vU? + )i j_12— (¥ /(¥ — D)vp+(p/2)v(U2+v?))i 1172

Ay

(i-1,-1) (i,j-1) (i+1,j-1

20

FIG. 10. Cross flow fluxes as source terms.

1-1 1 1+
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If the Navier—Stokes equations are solved, the source t&mnalso contain the viscous
flux balance. If this is done for all cells in ropthe RHR solver presented in Subsection 4.2
can be applied to compute the fluxes at the interfade®, j), (3/2, j), (5/2, j), etc.
Equations (31), (9vc, —va=0, andYc, — Ya=0 (if u is positive) form a nonlinear,
but closed algebraic system for the primitive variables in the regtanand C,. For the
fluxespuYy, the mass fractiony, are taken from the upwind side (for positiudrom the
regionA).

To compute the fluxes at the interfacgsl/2), (i, 3/2), (i, 5/2), etc., the same can be
done for column where the modified source terms

(pWi—1/2,j — (pWit12,

R =R+ AX
M = My | + (P2 + Pli-1/2.] — (U + Plit1/2,]
AX
- (puv)i—1/2,j — (PUV)i1+1/2,]
Nj = Ni.j + JAX /e (32)
Q" =Qij
n ((y/(y = Dyup+(p/2uUu?+v2))i—1/2. — (¥ /(¥ — DI)up+(0/2UU2 +v?))i 112 ]

AX

have to be used. This has to be done for all rows and columns. In our code the fluxes f
the old time level are used to compute the modified source terms, i.e., the fluxes,»
in (31) and the fluxes)i+1/2 j in (32). For the first time step 10 iterations are made startin
with the fluxes obtained with a conventional Riemann solver.

In short one can describe the whole procedure as follows:

(i) The source terms have to be modified using (31) with the fluxes of the old tin
step. Note thaf; ; contains the viscous terms as well. _

(if) Because of stability reasons (see Section 7) the modific&ior= (1 - 0)S; +
%($k+1,j + S + S 41+ Sy for the source terms is suggested. We have ésed
0.04 which is an empiric value.

(iii) Using §';, the RHR solver can be applied to derive the fluxes at the easte
and western cell interfaces. We chaesg equal to one, ii was positive at the interfaces
9Qi11/2,j and equal to zero, il was negative at both interfaces. RgL1/2 jUi_1/2j <0
o was set equal toi_1/2j/(Ui—1/2j — Uit1/2,j), if not both,ui;1/2; andui_12 j, were
zero. In that casé_;*,j was set equal to zero since then the RHR solver needs not to
applied.

(iv) Analogously to (i), (ii), and (iii), the northern and southern fluxes can be dete
mined.

(v) These fluxes and the source teBr) are used for the time integration.

(vi) Goto (i) for next time step.

Modifications of the source terms are necessary to extend the RHR solver to axisymm
flow with or without swirl, to flow in a rotating frame of reference, to 3D, and to structure
meshes with curvilinear coordinates.
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6. ACCURACY OF THE INVISCID TERMS IN THE STEADY STATE

We assume that in 1D the integral over the source terms (and the viscous termsj) in
is accurate of ordeAxX, i.e., the error i3 Ax¥. We define

. L
(B) = Zﬂj and Ax=—,

1
N = N

wherelL is a constant length scale amlis the number of cells. In the steady state th
difference of the fluxes atj 11, andx;_1,» must be equal to the integral over the sourc
term in celli due to the conservativity of the scheme. Therefore, if the flug atis exact
(e.g., if we have Dirichlet boundary conditions), the error of the fluxsat is B1AXK. By
induction it follows that the errors of the fluxes»t ,,, are

AXkIZ,BJ'
=1

and atxy1/2 the expected error is

kL

A ok-1
AX(,B)—AX L{B).

AXEN(B) = Ax
Since in the steady state the fluxes at the interfage,, are equal to those in ceilif
the RHR solver withy; =1 is applied, the differences between the numerical steady st
fluxes in celll and the exact fluxes &t/ are of orderA x¥~1, This has been demonstratec
with a 1D Euler test case with a source te@1x) in the energy equation (Fig. 11; in units
of 2.5 x 10°m~1s3kg). The source term is a known function »fand can be exactly
integrated over each cell. At the left boundary the velocity is 50 m/s and the temperatu
300 K. At the right boundary the pressure i€ Ba. In the Figs. 11, 12, and 13 the velocity
temperature, and pressure profiles of the steady state solutions obtained on grids w
10, 20, and 40 cells are shown. Figure 11 additionally shows the energy source terr
ordinate units of 5 x 10° m~1s~3kg). It can be observed that the cell averaged values &
identical to the exact ones at the corresponding right cell interfaces.

For 0< « < 1 the RHR solver guarantees that the fluxes inickdl between those at the
corresponding interfaces, if the source term components do not change their sign w
the cells, i + 1, andi — 1. Therefore the fluxes in the cells are bounded by the fluxes at
interfaces. This is not the case with a conventional Riemann solver.

If steady state is obtained with a conventional Riemann solver, the fluxes and so
terms are balanced for each cell, but for each additional time step shock tube prob
have to be solved due to the jumps at the cell interfaces. This means that shocks, cc
discontinuities, and expansion fans travel into the cells and by taking the average o
different regions in the cells at the end of the time step, numerical entropy is produced.
is a physical interpretation of numerical diffusion in 1D. The task is to make the jump:s
the cell interfaces as small as possible which can be done by a higher order reconstrt
of the flow variables at the left and right cell sides. Figure 14 shows the situation in 1D
the interface between the cells 2 and 3 for a conventional Riemann solver. It is shown
the flux differences\pu at the cell interfaces become smaller, if a second order MUSC
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Velocity
100 ' ' '
50 -
o] . . .
O 10 20 30 40

X

FIG. 11. Velocity plot of a 1D Euler test case with an exact source term (lower plot, in unit§of 20° s=3
m~1 kg) in the energy equation on 4 different grids; 5, 10, 20, 40 cells: dashed, dotted, dash-dotted, solid line

Temperature
1000 '

500 -

X

FIG. 12. Temperature plot of a 1D Euler test case with an exact source term in the energy equation c
different grids; 5, 10, 20, 40 cells: dashed, dotted, dash-dotted, solid lines.

Pressure
4000 T T

2000 -

30 40

FIG. 13. Pressure plotp — p.) of a 1D Euler test case with an exact source term in the energy equation ¢
4 different grids; 5, 10, 20, 40 cells: dashed, dotted, dash-dotted, solid lines.
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FIG. 14. Steady state obtained with a conventional Riemann solver.

scheme is applied. The situation is completely different in the steady state which is obta
with the RHR solver. Then the flux differences at the volume interfaces are equal to
source terms located there (and no shocks, contact discontinuities, or expansion fans
into the volumes). After a further time step there is no mixing and therefore no numer
entropy production by the convective terms. Figure 15 shows this situation at the inter
between the cells 2 and 3.

Figure 16 shows the spatial order of the flame velocity of the 1D test case of Sec
3 (Fig. 3) using four different grids. It can be seen that the guglfl, — U3 o (Uisne=
0.522 m/s is the flame velocity by [25]) depends on the flux solver and is of order one ir
cases (conventional Riemann solver, RHR solver with1, and RHR solver withk = 0.5),
but more accurate with = 0.5. The fluxes are expected to be second order accurate ar
possible reason for the first order of the flame velocity is that the volume averaged ve
(which is a first order approximation to the values at the volume interfaces; Figs. 11-
are used for the evaluation of the viscous fluxes and the source terms.

7. STABILITY

First the stability condition for the scalar 1D model equation

au au
— 4+ a;— = —asu, 33
at  tax 3 (33)
wherea; andag are non-negative constants without viscous terms with the discretizat
(using the RHR solver with @ o < 1)
At

urtt = — " (Ul —uy) + A —aagAt(u! —ul ;) — aAtuMt  (34)

will be derived. The third term on the right side of (34) corresponds to the second term
the right side of the first equality of (10).

Note that the characteristic relations (9) simplifyut§ = u for the 1D advection equa-
tion with a; > 0, and thugfc,)i—1/2 = a1u; 1 (cf. Subsection 4.3). Fer =1, (34) is a first
order upwind scheme.

AP

—E—'_E_

1 2

=Y

Saxvy
1}
[}
]

4 5

FIG. 15. Steady state obtained with the RHR solver.



594 JENNY AND MULLER

1.000 F '

I N

0.100

T T T T
|

Error

0.010

Ll

0.001

100 1000
Number of grid points

®]

FIG.16. Error =|ugin.—ugs s 20,40, 80, and 160 pointsg;,, .= 0.5227; solid line, conventional Riemann

solver; dashed line, RHR solver with= 0.5; dashed pointed line, RHR solver with=1.

For (34) the von Neumann stability analysis leads to the sufficient stability condition:

AX . a
At < , if (l-—a)ag< —
a; — (3 — a)agAx AX
or (35)
1 a . ay
> — if (1—a)ag>—.
2 agAXx’ (1-a)as = AX

To be sure to fulfill the second relation of (35) also for huge source tegnasd small
wave speeds; one has to choose> 0.5. If « = 1 the first relation is equal to the time step
restriction for an upwind scheme and tor< 1 the restriction is even less stringent.

Next the 2D case will be studied. Therefore we consider the scalar equation

au au au
— +a— +a— = —azU, 36
ot Tk TRy 3 (36)

wherea;, ay, andag are non-negative constants with the following discretization (using th
RHR solver with 0< a < 1):

a a
o=ty + ou( Tt + o 1= St et ) )
a & & n
_AI(HUII + (1—01)(A—yui,j1— A—yui’j —agui,j>)
a
un a n+1
— At yu,J+(1 o) Uil g | _H hj—asu | ) — Atasui'it. (37)

In Eqg. (37) the terms corresponding to the second terms on the right side of the first equi
of (10) are those with the factél — «). It is easy to see that we have a first order upwinc
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scheme ifoa = 1. One part of that term consists of the flux difference of the cross flux
which are taken here from the corresponding upwind cells. The numerical scheme w
was used to produce the results presented in this work takes the cross fluxes from tf
time level.

The von Neumann stability analysis leads to the sufficient stability conditions

rg3>1+42(rp+rp) +4ry

if ry > —min(ry, o),
—r3§1—2(1—01)(f1+f2)} 4= ~minr. 1)

1y <14 20a(r +rp) + 4ry if rg < —max(ry, ra),

wherer; =a; At/AX, ro=aAt/Ay, r3=1+ agAt, andry = (1 — a)agAt — a(ry +ro).
We investigate the two relations

rg>14+2(0r1+r2)+44 and  —rz3 <1+20(r1+r2) +4rs. (38)

To satisfy the first condition of (38)

_1
a a;
+%(—1+—2+a3) (39)

must be fulfilled. For the second one we obtain the following stability limitAor

- AXAy
= a(@AY + aAX) — (5 — 4a)(1/2)asAXAyY’

(40)

The relation (39) shows that must be larger than or equal to 0.5. If the source term

huge(az > a;/AX + ap/Ay) a must be larger than or equal to 0.75. The conclusion

that in order to be sure to satisfy (39) one must séb& o« < 1. If « =1, (37) becomes a

classical upwind discretization of the corresponding differential equation with the stabi
condition (40).

8. SPATIAL ACCURACY FOR SYSTEMS

The numerical problem with the source term in one space dimension, which was
motivation for this work, is equivalent to finding characteristics for systems in multi dime
sions. Generally it is not possible to diagonalize the Jacobian of the source term witf
left and right eigenvector matrices of the Jacobian of the inviscid flux. In the scalar c
the Jacobians of the flux and of the source term are scalars and in diagonal form. Ther
these numerical phenomena cannot be studied with a scalar equation and a system
be considered.

In Section 7 we have seen that the RHR solver with 1 is equal to a first order upwind
scheme and withh = 0 we have a downwind discretization (for positive wave speeds). T
RHR solver treats the source term in a different, physical way and we have seen in Sec
that the fluxes of the other space dimensions can be treated as a part of the source t
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well. To study the non-scalar case we consider the one dimensionaly/stem

() s (@) mell)
R

wherea, b, u, andv are assumed to be positive asi$ a function ofx. The discretization
with the RHR solver for the steady state

2(), = en(l)

leads to

/ u 7/ u.7
——s|% %lrr(")-s.|* 2|rtor("1),
0 o - Vi 0 - Vi1

wherea’ ande” correspond te of (34) and belong to the two characteristic equations o
(41). In each equation of the characteristic fooms T — o multiplied by the source term
in the left cell of the interface has to be added to the upwind discretization of the flux
After the back transformation one obtains

Di_Ariiil % 0 1 l:]i
M )=-sr|* IR Q(,) ~s.R
Ax 0 -% v 0

If ' =1 anda” =0, then (42) is equal to the upwind steady state discretization:

Gi—Gi 1 19 G 0 0] 0 _
) = _gRr|® R! (')—-_R R™! ('l>. 43
(aiﬁH) S—[o o]_ Q Vi S-18 0 —%_ R™Q Vi1 (43)

AX

07 B_lQ(Di-l) 42)
|

o[R]

Vi-1

Fora’ =a” = 0.5 one obtains

Gi—i—q 1 ]
A - Y

<a._A§ >=—%B[a 1]3*9(

e 0 -

1
i S-1 a 0 -1 i
- —R R
)-% —lo L
b
We consider the example

A_[0 1] _[1 -1][2 0]] 13 13 o_[00
=T12 17 (2 1]lo —1]|-2/3 y3|" =T |1 1]

ST
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with 9(0) = v and{i(0) = Up. In the steady state we have

Uy =0, 1]

B s ifo<x<1
*“\o else

and the exact solution is

(Uo+D0)e ™2~y if0O<x<1
U=7%, U=|To if x <0
(Uo+To)e 23—ty  if x> 1.
With the upwind discretization (43}’ =1, «” =0), AXx=1, andx; =i — 1/2 we have

e to {4+ v, /=05 N Uy + v 2([] +70)
— — = — v,
o o 3 ~1 3 g o
{o Gy U+, /-1
_ = 46
(172> (51> 3 ( 1) (40)
N U1\ 1/ 8l — o U2\  1/20o— o
b1/) 9\ T7dp—2o/) \ 12/ 3 3
and with (44)(«’ = «” =0.5),
U\  (Oo\ _Oi+v/-1 :>01+51_U0+vo
01 %) 4 0 4 5
1P H Ui +v1/-1
— = 47
(172> <51> 4 ( 0> *7)
N U1\  1/4do— o U2\ 1 /3o — 20
1) 5 57 "\12) 5 51 '
The solid lines in the Figs. 17 and 18 show the exact steady state solutidasdf, while
the dotted ones are the upwind solutions (46) with- 1 ande” = 0 and the dashed lines
those of (47) withr’ = o” = 0.5. Fora’ = 1 anda” = 0 we observe a non-constantvhich
is constant in the exact solution and in the solution witk- «” = 0.5. Further the solution
of 0l is much more accurate witl =«” = 0.5. We could show (Figs. 17 and 18) that the
same phenomena of the combustion test case arise also in the steady state solution
simple system and that the results become much better, if the source terms are distri
to the cell interfaces with the same weights.

The exact solution (bold lines), the numerical solution with- «” = 0.5 (dashed lines),
which corresponds to the RHR solution with=0.5, and the numerical solution with
o’ =1 anda” =0 (dotted lines), which is equal to a conventional upwind scheme, :
shown. Opposed to the conventional upwind scheme, the RHR scheme captures the
in 0 and the constancy af Correctly.

To avoid the numerical phenomena discussed above for the conventional upwind sck
« must be equal for all equations. Further the von Neumann analysis for the RHR solv
1D and 2D with the explicit Euler method for the time integration shows that the stabi

conditions fowx (for positiveu andv) are05 <o <1in1D(35)and 75< « < 1in 2D (39).
In 1D, the RHR solver has proved to be more robust with 1 than withe =0.5. To
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| | |

1 0 " "2

A |

FIG. 17. Steady state solutioof (46) and (47): exact solution (bold line); numerical upwind solution with
o’ =1 anda” =0 (dotted line); and numerical solution with=«” = 0.5 (dashed line).

overcome stability problems for 2D subsonic flow even witk 1, we used smoothed
source terms (end of Section 5; for the time integration (11) the non-smoothed source te
are used) to compute the inviscid fluxes with the RHR solver (10).

9. RESULTS FOR STEADY FLOW

9.1. 1D Premixed Laminar Flame

We consider the discussion of Section 3 for the 1D test case of a premixed laminar fla
The dashed lines in Fig. 3 show the steady state results obtained with the RHR solver:
aj = 0.5 for the 1D flame test case introduced in Fig. 2. The solid lines in Fig. 3 show tl

| | I

T 1 1 2

o |

-1 0

FIG. 18. Steady state solutiom6f (46) and (47): exact solution (bold line); numerical upwind solution with
o’ =1 anda” =0 (dotted line); and numerical solution with=«” = 0.5 (dashed line).
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FIG. 19. The 2D Euler test case without source terms; injection in channel flow.

steady state results obtained with the characteristic based Riemann solver. The tempe
plots are almost the same with the RHR and the characteristic based approximate Rie
solver. But with the RHR solver the mass flux is constant, no pressure peak can be obs
and the flame velocity (i.ey(x =0)) of the dashed plot is closer to the value by [25
which is about 0.522 m/s. In the pressure plot of Fig. 4, which is shown with another sc
a slight pressure decrease through the flame can be observed which corresponds
Rankine—Hugoniot jump conditions.

Figure 3 shows that the RHR solver leads to much more accurate steady state rest
1D than a conventional Riemann solver.

9.2. Injection in 2D Inviscid Channel Flow

The new approach of a flux solver has been tested for the homogeneous compressit
Euler test case which is introduced in Fig. 19. A tube containing the main flow with inlet:
the leftand right walls where fluid is injected is considered. In shock free steady inviscid fl
the total pressur@y = p(1+ ((y — 1)/2)M?)*/*=D) js constant along streamlines. Thus
the incompressible total pressysg; = p + (u? + v?) p/2, by which we approximatpg for
low Mach number floMMnax~ 0.1 here), is approximately constant along streamline
The right plots of Fig. 20 show that this is fulfilled very well, if the RHR solver is use
(an equidistant 1& 26 grid was used for only one symmetry half). However, the rest
obtained with a conventional Riemann solver contains non-physical pressure peaks
plots of Fig. 20) due to neglecting 2D effects. In Section 5 we showed the analogy betv
source terms in 1D and multidimensional effects if dimension decoupling is applied. T
explains the non-physical solutions in homogeneous 2D Euler simulations (Fig. 20, left).
numerical error of conventional Riemann solvers reminds one of the carbuncle phenom
in supersonic blunt body computations [22]. Taking 2D effects into account, our RHR so
computes the turning of the injected flow correctly (Fig. 20, right).

9.3. 2D Laminar Bunsen Flame

The RHR solver also leads to more accurate solutions of the 2D combustion test
of Fig. 21 which shows an infinite series of laminar Bunsen flames. The same one
mechanism (5) of the 1D flame in Section 3 and Subsection 9.1 andk&1&rid were
used (for one symmetry half only). Figure 22 shows the velocity vectors and the temper:
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FIG. 20. Total pressure (surface and contour plots) and velocity field; RHR solver (right); convention
Riemann solver (left).

contour plots of the steady state results obtained with a conventional Riemann solver
with the RHR solver, respectively. The reactant mass fraction contours of the two soluti
are plotted on top of each other in Fig. 23. The numerical flame shapes correspond
well to the approximate analytic solution of the flame contour (dashed lines; the numer;
flame velocity of the 1D test case with 20 grid points was used). But already this figt
shows some differences between the results. Much larger differences between the pre
fields p — pout Of the two solutions are shown in Fig. 24. The same solutions are plott
from another view point and with different scales in Fig. 25. While the results obtained w
a conventional Riemann solver (left plots of Figs. 24 and 25) show pressure difference
about 150 Pa the results obtained with the RHR solver show pressure differences of
12 Pa (right plots of Figs. 24 and 25). The pressure decrease of about 2 Pa across the
in Fig. 25 corresponds precisely to the results in Fig. 4 of the 1D test case. Additione
there is a global pressure decrease along the symmetry plane of the Bunsen flame d
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FIG. 21. The 2D combustion test case; an infinite series of Bunsen flames.
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FIG.22. Temperature contour plots with analytic solution and velocity field; RHR solver (right); conventior
Riemann solver (left); approximate analytic solution (dashed lines).
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FIG. 23. Mass fraction contour plots with analytic solution; RHR solver (solid lines); conventional Riema
solver (dotted lines); approximate analytic solution (dashed lines).
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pressur® pressur®

FIG. 24. Pressure surface plots; RHR solver (right); conventional Riemann solver (left).

the higher gas velocity at the top of the flame. If we notice that the pressure difference
the left plots of Figs. 24 and 25 are about 75 times the dynamic pressure of the unb
gas at the bottom of the flame, it becomes clear that such large inaccuracies in the pre:
field induce inaccurate streamlines and therefore the flame shape can become inacci
In Fig. 26 contour plots ofi andv are shown. The right and left symmetry halves show
the results obtained with the RHR solver and a conventional Riemann solver, respecti
Corresponding to the pressure fields, also their differences are considerable. Finally
pressure field, velocity vectors, and the reactant mass fraction contours of a simula
with far field boundary conditions at all boundaries (we have used Neumann bound
conditions) except for the unburnt gas at the southern inlet (Fig. 27) are shown in Fig.
Although the pressure and velocity fields differ very much from the solution of the test ce
with the infinite series of Bunsen flames, the flame shapes look similar.

pressur®
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FIG. 25. Pressure surface plots; RHR solver (right); conventional Riemann solver (left).
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FIG. 26. \Velocity (x-component: lefty-component: right) contour plots; RHR solver (solid lines); conven
tional Riemann solver (dotted lines).

It is even more important to obtain an accurate pressure field if acoustics in flames
be studied and it is obvious that such huge errors as shown in the left plots of Figs. 24 a
will corrupt the results. It is possible to reduce these errors by a grid refinement but
much cheaper to apply the RHR solver.

10. RESULTS FOR UNSTEADY FLOW

10.1. Sound Generation by Colliding Flames

The following 1D test case suggested by Professor G. Searby [26] shall demonstrat
the RHR solver allows us to make numerical studies of acoustics produced by two colli
flames in a tube. The same flame as in Fig. 3 was used but due to stability problems
« = 0.5 the source term was distributed to the upwind side of the cell (for positive veloci
to the left else to the right cell interface).

[ Fwuf wimm Tamact

computational
domain

unburnt
300K

2mm
-

FIG. 27. The 2D combustion test case; far field boundary conditions.
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FIG. 28. Pressure field, mass fraction contours, and velocity vectors with far field boundary conditions us
the RHR solver.

The collision of two flames in an infinitely long tube is studied. As the gradients at tl
boundary are assumed to be small, Neumann boundary conditions have been applie
U in order to have no reflections. The computational domain is the part of the tube wh
the collision of the flames takes place and is 2 mm long (only one-half of the symmet
field). The mesh has 25 grid points and the time step wasl88 s (the maximum CFL
number was about 0.8). In Fig. 29 the flames before the collision are sketched. They
not interfere yet, and the states in the areas on the left and right sides of the flames
between them are constant. After the collision (Fig. 30) two expansion waves travel a
from the center with a constant spagge and the fluid between them is at rest. With the
analytical solution derived in [10] one obtains 848.63 m/sif@fe, 1793.15 K forTcenterand
—470.86 Pa forpeenter— Poos If the expansion waves are approximated by discontinuities

With this we have a good estimate of the values in the center after the collision. To .
more about the pressure during the collision the linear dependence of the acoustic pre:
P — P ON( the rate of heat released in the domain [4, 26], is investigated. Thus, we che
Peenter— Poo & €14 + C2 Wherec; andc, are two constants. At the beginnitiggand the
pressure in the center are constant. As soon as the preheat zones of the two flames inte
the reaction rate and grow and therefore the pressure level increases. After a while
becomes smaller because there is less and less fuel left until it is consumed at atj. Th
is zero, and the pressufpcentey FemMains constant.

Figure 31 shows the temperature, the velocity, and the mass fraction of the product at t
different times. In Fig. 32 the pressure profifes- p,, at four different times are presented.

Uflame Uf1ame
—- -y
- .. .. - - .
burnt unburnt burnt
Po UYout 9 9 Yout Pe
- g Tunburnt 5 —
Tburnt = u=20 = Tburnt
L N ] : - X
0

FIG. 29. Test case of two interacting flame fronts generating sound; before the collision.
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- ... P
| X
0

FIG. 30. Test case of two interacting flame fronts generating sound; after the collision.

To show that the simulation fulfills the criteriqtenter— Poo ~ €14 + C2, Peenter— Poo, aNd
€19 + ¢, with appropriate constants

Peentet = 0) — Peente(t — 00)
C =

qt =0 and C2 = Peentelt = 00) — Po

are shown in the same plot as a function of time (Fig. 33). As expected one can see
one curve. The differenc@center— Psc) — (€14 + C2) iS shown in Fig. 34. The numerical
values in the center at the end of this simulation-ad@ 117 Pa for the pressure difference
Peenter — Poo (the analytic value is-47086 Pa) and 1793.11 K for the temperature (th
analytic value is 1793.15 K). The velocity is zero as it should be. Thus the numerical res
correspond almost precisely to the analytic ones.

10.2. Oscillating Bunsen Flame

The interaction of acoustic waves with a Bunsen flame was suggested by Profe
G. Searby [6, 26]. At the same time we wanted to check whether the scheme with the |
solver remains stable for this unsteady 2D computation.

The initial state was the steady 2D Bunsen flame with farfield boundary condition:
Fig. 27 but the velocity of the cold mixture at the outlet of the tube was 1.5 m/s and sta

Velocity
2000 5
1000 0
0 ) -5
-0.002 0.000 0.002 ~-0.002 0.000 0.002
X X

Mass fraction

1.0
t=0s
osl Vo t=5%x10 s
cmmme 1= 1x107s
0.0
~0.002 0.000 0.002
X

FIG. 31. Two interacting flame fronts generating sound in an infinitely long tube; temperature, velocity, :
mass fraction plots at three different times.
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Pressure
50 T =

FIG. 32. Two interacting flame fronts generating sound in an infinitely long tube; pressure plots at fo
different times.

to oscillate at the timé =0 s with a frequency of 10,000 Hz and an amplitude of 1 m/
(Fig. 35). Experiments by Hahnemann and Ehret [9] use a strong sound source loc
upstream in the tube and their measurements show that the flame contours are very clc
sound potential surfaces. Figure 36 shows mass fraction isolines and velocity fields of
simulation at the times 0.014025, 0.01405, 0.014075, and 0.0141 s in the same plot
isolines of the results dt=0.0141 s are solid while the others are dotted). Additionally
the isolines of the analytic solution of the sound potential surfaces [16, p. 378] are shc
(dashed lines) and like in Hahnemann and Ehret’s axisymmetric experiments one car
that near the plane of symmetry the flame contours are close to one of those semicir
Figure 37 presents the pressure as a function of time which is periodic in time. The m
differences between our numerical and Hahnemann and Ehret's experiments are first
our simulation was 2D and not axisymmetric like the physical experiments; second t
the diameter of Hahnemann and Ehret’s tube containing the reactive gas mixture wi
times larger (i.e., 10 mm) than in our simulation; third that we have used a frequency
10,000 Hz instead of about 5000 Hz; and fourth that the one step mechanism (5) might
properly describe the propane air combustion of the experiment. In our computation
flame was already flattened after about 5 oscillation cycles which could not be observe
Hahnemann and Ehret's experiments.

Pressure; reaction rate

200 ]
O —
—200 |- —
Peenter " P E
—400 - A —
cig+c, :
—s00 L . . . .
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

FIG. 33. Two interacting flame fronts generating sound in an infinitely long tube; pressure and heat rele

as functions of time.

t
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FIG. 34. Two interacting flame fronts generating sound in an infinitely long tylgier— P — (C,G + C2)
as a function of time.

computational
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unburnt
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= 1.5%“ —sin (20000::0?

FIG. 35. Unsteady 2D combustion test case; oscillating Bunsen flame.
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FIG. 36. Oscillating Bunsen flame at 4 different times within one oscillation; mass fraction contours &
velocity vectors; analytic sound potential surfaces (dashed lines).
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FIG. 37. Oscillating Bunsen flame: pressure at the nozzle as a function of time.

For higher velocities of the reactive mixture (e.g., 2 m/s instead of 1.5 m/s) no flatteni
of the flame could be observed but an oscillation with the acoustic frequency. Our phys
interpretation of this phenomenon is the following: Since an acceleration field has a st
lizing effect on a premixed flame the flame tends to achieve the shape of an isopotel
surface of the acoustic field. This is generally impossible because the total surface of
flame is almost constant for a given mean mass flow rate of the reactive gas mixture
the resulting flame shape is a compromise (Fig. 36). If the difference is too large, the fle
cannot be stabilized by the acoustic acceleration field and will oscillate. This was also
served in the experiments by Hahnemann and Ehret [9]. Nevertheless, the situation the
different: Only a small change of the flame contour near the root is necessary to comy
sate the flame surface decrease due to change of the peak size. Therefore the axisymi
flame can achieve a shape closer to an isopotential surface of the acoustic field than a 1
in 2D.

For our simulation an equidistant Cartesian grid ofx181 points (only one symmetry
half) was used. One oscillation cycle corresponding £01D~“ s and 2000 time steps took
approximately one hour on a SUN SPARC 20 workstation without any attempt to optimi
the code.

11. CONCLUSIONS

A new approach for a flux solver which takes source terms, viscous terms, and mt
dimensional effects into account and its application to steady and unsteady simulatior
1D and 2D with and without combustion is presented. This work was motivated by a n
constant mass flux and a non-physical pressure peak in steady 1D flame simulations. T
errors originate in the assumption of Riemann invariants along the characteristics whic
only valid for 1D homogeneous hyperbolic systems. The basic idea of the new solver i
distribute the source terms from the cells to the interfaces and treat them as discontinui
Thus, one obtains hyperbolic conditions within the cells and the idea of Riemann invaria
along the characteristics from the cells to the corresponding interfaces can be app
Additionally the Rankine—Hugoniot jump conditions must be satisfied at the cell interfac
Solving the nonlinear algebraic system consisting of three Rankine—Hugoniot conditi
andthree Riemann invariants leads to the RHR solver (Rankine—Hugoniot—Riemann sol
Since the laminar flame speed is a function of reaction rate, heat conduction, and molec
species diffusion, a minimum grid resolution is required. However, it has been shown t
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a much finer grid is necessary for a conventional Riemann solver to keep the errors il
pressure field small (important for simulations of acoustics), whereas a much coarser
can be used if the RHR solver is applied (cf. Figs. 3, 24, and 25). Opposed to other
solvers the RHR solver allows us to make a physically based dimension decoupling i
flux differences of the other space directions are considered as a part of the source te
2D test case of an infinite series of laminar Bunsen flames shows that much more acc
results are achieved applying the new flux solver instead of a classical Riemann solvel
subsonic injection in a channel, a 2D Euler test case without source terms, the treat
of the 2D effects leads to a much more accurate total pressure field. An unsteady 1C
case of two colliding flames shows that the RHR solver allows us to simulate acou:s
produced by combustion and an unsteady 2D test case demonstrates that it is possi
simulate the flattening of a Bunsen flame by an acoustic field. An open question conc
the stability of the multidimensional scheme with the RHR solver. For our 2D simulatic
a spatial smoothing of the modified source terms was necessary.

By modifying the source terms, the RHR solver can be extended to axisymmetric f
with or without swirl, to flow in a rotating frame of reference, to 3D, and to structure
meshes with curvilinear coordinates.

This approach is more general and can be applied to solve other systems of p
differential equations which can be expressed as hyperbolic conservation laws with sc
terms.
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